A refinement of the Murnaghan-Nakayama rule by descents for border strip tableaux

27.10.2020 15:15 - 16:45

Stephan Pfannerer-Mittas (TU Wien)

Abstract: Lusztig's fake degree is the generating polynomial for the major index of standard Young tableaux of a given shape. Results of Springer and James & Kerber imply that, mysteriously, its evaluation at a d-th primitive root of unity yields the number of border strip tableaux with all strips of size d, up to sign. This is essentially the special case of the Murnaghan-Nakayama rule for rectangular partitions as cycle type.
We refine this result to standard Young tableaux and border strip tableaux with a given number of descents. To do so, we introduce a new descent statistic for border strip tableaux, extending the classical definition for standard Young tableaux. 

Achtung: Aufgrund von Raumproblemen findet der Vortrag nicht auf der TU Wien, sondern im HS 12 im Gebäude am Oskar-Morgenstern-Platz 1 statt.

Organiser:

Ch. Krattenthaler

Location:
HS 12, 2. OG, OMP 1