p-modular Hecke-modules for p-adic reductive groups versus Galois representations

04.12.2018 13:15 - 14:45

Elmar Große-Klönne, Humboldt-Universität zu Berlin

 

Abstract: Let F/Q_p be a finite extension of the field of p-adic numbers. Let G be a reductive group (defined and split over O_F), let G^\vee be its dual group, let k be a field of characteristic p. Motivated by the (at present highly speculative) search for a p-modular local Langlands correspondence, we try to relate:

--- (supersingular) modules over the pro-p Iwahori Hecke k-algebra attached to G/F

--- G^\vee-valued Galois representations over k, i.e. homomorphisms Gal(\overline{F}/F) to G^{\vee}(k)

Organiser:

H. Grobner, A. Minguez-Espallargas, A. Mellit

Location:

SR 01, EG, OMP 1