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Locally countable Borel combinatorics

. . . is the study of Borel combinatorial structures (e.g., trees, group actions) on
standard Borel spaces (e.g., R, 2N) which “live on” countable pieces.

Example A Borel action F2 = ⟨a, b⟩⟳ X induces a Schreier graph on X :
x G y :⇐⇒ (ax = y) ∨ (bx = y) ∨ (ay = x) ∨ (by = x)

If the action is free, then the graph is a forest (each component is a tree).

Many widely studied classes of locally countable Borel combinatorial structures:
▶ group actions
▶ graphs, trees, simplicial complexes, . . .
▶ graph colorings, perfect matchings, . . .

This talk is about the global aspects of “all” locally ctbl Borel combinatorial structures.
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Countable Borel equivalence relations (CBERs)

. . . E ⊆ X 2 are Borel equivalence relations with countable equivalence classes
(the “countable pieces”).

Instead of “Borel structures with countable pieces”, we look at “Borel families of
countable structures” on the classes of a CBER.

Example If a CBER E ⊆ X 2 admits a Borel family of free transitive F2 actions on each
class, then E also admits a Borel family of trees on each class.

Example (Jackson–Kechris–Louveau) Turing equivalence ≡T ⊆ (2N)2 does not admit
a Borel family of trees on each class.

Example (Feldman–Moore) Every CBER is induced by a Borel action of a countable
group, i.e., admits a Borel family of transitive Fω = ⟨g0, g1, . . .⟩ actions on each class.
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Structurings

Let L be a countable first-order language.

Definition A Borel L-structuring M of a CBER E ⊆ X 2 is a Borel family of
countable L-structures (MC )C∈X/E on each equivalcne class C ∈ X/E .

Example A locally countable Borel graph G ⊆ X 2 is an Lgraph-structuring
for Lgraph = {G} (G a binary relation symbol) of any CBER E ⊇ G .

Example A Borel action of a countable group Γ generating E is an LΓ-structuring of E
for LΓ = {aγ}γ∈Γ (each aγ a unary function symbol).

Example A Borel Γ-action generating E is actually a structuring by models of
TΓ := {∀x (a1(x) = x)} ∪ {∀x (aγ(aδ(x)) = aγδ(x)) | γ, δ ∈ Γ}

∪
{
∀x , y

∨
γ∈Γ

(aγ(x) = y)
}

.

For a ctbl Lω1ω theory T , a T -structuring is an L-structuring M s.t. each MC |= T .
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Interpretations

Definition Let (L1, T1), (L2, T2) be ctbl Lω1ω theories (in relational languages).
α : T1 −→ T2An interpretation

n-ary L1-relns R 7−→ L2-formulas α(R)(x0, . . . , xn−1)is a mapping
such that these formulas define a model of T1 in every model of T2:

Mod(T1)←− Mod(T2)
(α(R)M)R∈L1 ←− [M.

Example Given an Fω-action M = (C , aγ)γ∈Fω=⟨g0,g1,...⟩, we have the Schreier graph

x G y :⇐⇒
∨
n

((agn(x) = y) ∨ (x = agn(y)))︸ ︷︷ ︸
α(G)(x ,y)

.

This is defined by an interpretation
α : theory of graphs (in Lgraph = {G}) −→ theory of Fω-actions (in LFω = {aγ}γ∈Fω ).
Note There is a more general model-theoretic notion of “imaginary interpretation” that we’re not using.
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Interpretations and structurings

α : T1 −→ T2An interpretation
Mod(T1)←− Mod(T2)yields a mapping

hence also given a CBER E ⊆ X 2,
{T1-structurings of E} ←− {T2-structurings of E}.

Example There is an interpretation α : T4-reg tree → Tfree F2-action.
Thus, every CBER E induced by a free F2-action admits a structuring by 4-reg trees.

The converse is also true.
However, there is obviously no interpretation Tfree F2-action → T4-reg tree!

Example (Feldman–Moore) Every CBER (structured by ∅) is structurable by TFω .
There is obviously no interpretation TFω → ∅!
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Freely available structures on CBERs

The most important theorem in locally countable Borel combinatorics:
Theorem (Lusin–Novikov)
Every CB(E)R E ⊆ X 2 can be written as E =

⋃
n fn for Borel fn : X → X.

In other words, every CBER admits a structuring by

TLN := {∀x , y
∨

n(fn(x) = y)}, in the language LLN := {fn}n∈N.

By second-countability of X , every CBER is also structurable by

Tsep := {∀x ̸= y
∨

k(Uk(x)↔ ¬Uk(y))}, in language Lsep := {Uk}k∈N.

Example We have an interpretation TLO → Tsep given by

x < y :⇐⇒
∨
n

( ∧
k<n

(
Uk(x)↔ Uk(y)

)
∧ ¬Uk(x) ∧ Uk(y)

)
,

hence every CBER admits a linear order on each class.
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CBERs ↪→ theories

Theorem (C.–Kechris 2018, Banerjee–C. 2024)
We have a canonical assignment

{CBERs}

≅

↪−→ {ctbl Lω1ω theories}
E 7−→ TE

of a theory TE to each CBER E, called its Scott theory, such that

(a) For any other theory T , {T -structurings of E} ≅ {interpretations T → TE}.
(b) Up to bi-interpretations, the theories TE are precisely those s.t. TE ← TLN ⊔ Tsep.
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Main Theorem
(a) {T -strs of E} ≅ {interps T → TE}
(b) T ≅ TE iff T ← TLN ⊔ Tsep
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CBERs ↪→ theories

Theorem (C.–Kechris 2018, Banerjee–C. 2024)
We have a canonical assignment

{CBERs}

≅

↪−→ {ctbl Lω1ω theories}
E 7−→ TE

of a theory TE to each CBER E, called its Scott theory, such that
(a) For any other theory T , {T -structurings of E} ≅ {interpretations T → TE}.
(b) Up to bi-interpretations, the theories TE are precisely those s.t. TE ← TLN ⊔ Tsep.

Corollary (folklore, Banerjee–C.)
For any theories T1, T2, the following are equivalent:
(a) Every CBER E admitting a T2-structuring also admits a T1-structuring.
(b) There exists an interpretation T1 → T2 ⊔ TLN ⊔ Tsep.
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For a CBER E ⊆ X 2, we define TE by declaring that models M = (Y , . . . ) of TE on a
countable set Y to be bijections Y → X onto an E -class.

Note that for two CBERs E ⊆ X and F ⊆ Y ,
{interps TE → TF} ≅ {TE -structurings of F}

≅ {Borel class-bijective homomorphisms (Y , F )→ (X , E )}.
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Interpretations in the wild

Corollary (folklore, Banerjee–C.)
For any theories T1, T2, the following are equivalent:
(a) Every CBER E admitting a T2-structuring also admits a T1-structuring.
(b) There exists an interpretation T1 → T2 ⊔ TLN ⊔ Tsep.

In practice, many theorems of the form (b) are essentially proved via (a).
Example (Feldman–Moore) TFω = “transitive Fω-actions”→ TLN ⊔ Tsep.
In fact, TZ∗ω

2
→ TLN ⊔ Tsep.

In fact, Tcolor2 = “ω-colorings of complete graph”→ TLN ⊔ Tsep.
Example (Kechris–Miller)
Tcolor<ω = “ω-colorings of complete < ω-hypergraph”→ TLN ⊔ Tsep.
Example (Slaman–Steel) Tmarker = “�

⋂
n An = ∅, An ̸= ∅”→ Tsep ⊔ Tinf .

Theorem (Banerjee-C.) None of the interpretabilities

TLN ⇄

TFω −→ TZ∗ω
2
−→ Tcolor2︸ ︷︷ ︸

increasingly strong versions of FM

−→ Tcolor<ω −→ TLN ⊔ Tsep

can be reversed. However, these can be.
Proofs of ̸←: e.g., (Z, (−) + n)n∈Z |= TLN, but has nontrivial automorphisms.
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