
Coloring isosceles triangles countably in R2 but not in R3

Yuxin Zhou

University of Florida

Dec 14, 2021



0 Outline | 1

1 Introduction

2 Balanced Forcing

3 Define the poset P

4 The Theorem

5 Survey of Some Details in the Proof



1 Outline | 2

1 Introduction

2 Balanced Forcing

3 Define the poset P

4 The Theorem

5 Survey of Some Details in the Proof



1 Historical partition/coloring problems (ZFC) | 3

Theorem
there is a partition of Rn into countably many sets no one of which contains the
vertices of an isosceles triangle.

Given Axiom of Choice and the Continuum Hypothesis:
n = 1 case was proved by Erdős and Kakutani (1943).
n = 2 case was proved by by Davies (1972)
Any n case was proved by Kunen (1987)

Given Axiom of Choice only:
Any n case was proved by J. H. Schmerl (1996)
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Theorem (Schuml, 1993)

There is a partition of Rn into countably many sets no one of which contains the
vertices of an equilateral triangle.

Theorem (Erdős and Komjáth, 1990)

“There is a partition of the plane into countably many sets no one of which contains
the vertices of an right-angled triangle” is equivalent to the Continuum Hypothesis.
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Later, Schmerl provided a complete classification:

Theorem (Schmerl, 2000)

The chromatic number of any algebraic hypergraph Γ on an Euclidean space satisfies a
trichotomy: ZFC proves
I the chromatic number is countable, or
I the chromatic number is uncountable, or
I there is a natural number m ∈ ω such that the chromatic number is countable if

and only if 2ℵ0 ≤ ℵm;
In addition, there is a computer program which, for a given algebraic equation, outputs
the number m for the hypergraph given by the equation.
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Trying to do a parallel categorization in terms of chromatic numbers is much more
difficult without AC.
Theorem (Z., 2021)

It is consistent relative to an inaccessible cardinal that ZF+DC holds, Γ2 has countable
chromatic number while Γ3 has uncountable chromatic number.

There are two main difficulties:
I “+” part: invent the suitable balanced analytic poset which will add a countable

total coloring.
I “−” part: refine the poset to be fine enough so that it doesn’t add a countable

coloring for another hypergraph (often by investigating the geometric, algebraic, or
combinatorial differences).
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Theorem (Solovay, 1970)

From a model V of ZFC with an inaccessible cardinal, one can build a model of ZF,
DC and all sets of reals are Lebesgue measurable and have the Baire and perfect set
properties.

Definition (Solovay, 1970)

Let κ be an inaccessible cardinal and let PC = Coll(ω,< κ). Let filter G be PC -generic
over V . The symmetric Solovay model, denoted as W , is HOD(V ∪ ωω) as computed
in V [G].
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I The balanced forcings were invented in the new book Geometric Set Theory (2020)
by Larson and Zapletal.

I It provides independence theorems in choiceless set theory in such a form “it is
consistent relative to ZF+CD that φ holds while ψ does not hold” where φ, ψ are
both Σ2

1 sentences, typically consequences of AC or AC+CH.
Σ2

1 sentences is of the form ∃A ⊂ Xφ(A) where X is a Polish space and φ quantifies
only over natural numbers and elements of X .
I If G is a Borel graph on X : the statement G has countable chromatic number;
I If X is a vector space over a countable field: X has a basis;
I the Continuum Hypothesis.
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Definition
Let P be a analytic forcing. P is balanced if for every condition p ∈ P there is a
balanced virtual condition below p.

Given some algebraic (hyper)graphs Γ, Γ′ on Rn, we want to find a (cofinally) balanced
R-analytic poset (P ,≤) to force over the symmetric Solovay model W to get the
model W [G], in which Γ has countable chromatic number while Γ′ doesn’t.
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(P ,≤) need to satisfy:
I P is a set of some countable approximations of a countable colorings of Γ, ordered

by strengthened reverse extension ≤.
I P is transitive and σ-closed;
I P is analytic;
I ∀p ∈ P , supp(p) ⊂ R is a countable real-closed subfield;
I ∀p ∈ P ,∀x ∈ X , ∃q ∈ P that x ∈ dom(q) q ≤ p;
I P is (cofinally) balanced:

In some situations, ∀p1, p2 ≤ p0 ∈ P , ∃q ∈ P that q ≤ p1, p2;
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Theorem (Larson and Zapletal, 2020)

In all (cofinally) balanced extensions of the symmetric Solovay model W, every
well-ordered sequence of elements of W belongs to W.

Balanced Suslin/analytic forcings have a limitation:

Theorem (Zapletal, 2020)

There is no (cofinally) balanced Suslin/analytic forcing which adds a total countable
coloring for right-angled triangle hypergraphs.
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A Real-closed field: 〈R,≤,+, ·〉:
I it’s a field
I ≤ is invarient under addition and multiplication by positive numbers
I −1 is not a sum of squares
I every odd polynomial has a root

Fact
I it’s a complete theory;
I it satisfies quantifier elimination

Theorem (Marker)

if F ⊂ R is a real-closed subfield, then F is an elementrary submodel of R.
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Let Γ2 be the hypergraph of isosceles triangles on R2.
A countable coloring for Γ2 is a function from R2 to the natural numbers such that no
vertices of any isosceles triangle all get the same color.

Fix an ideal I on ω that contains all finite sets and it is not generated by countably
many sets.
Definition
Define P to be the poset of all conditions p such that
1 supp(p) is a countable real closed subfield of R and supp(p)2 = dom(p) ⊂ R2;
2 p : dom(p) −→ ω is a Γ2-coloring;
3 (the symmetrical colors requirement) for each l ∈ EL(dom(p)), s(p, l) ∈ I where

s(p, l) = {i ∈ ω : there are points y0, y1 symmetrical with respect to
l and p(y0) = p(y1) = i} ;
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Definition (continue)

And the ordering ≤ is defined by p1 ≤ p0 if:
4 dom(p1) ⊃ dom(p0);
5 p1|dom(p0) = p0;
6 (the symmetrical colors invariant requirement) for each line l ∈ EL(dom(p0)),

s(p0, l) = s(p1, l);
7 (the avoid center requirement) for each circle e ∈ EO(dom(p0)), for each point x

∈ e ∩ (dom(p1) \ dom(p0)), p1(x) 6= p0(t) where t is the center of e;
8 (the algebraic points requirement) for every finite set a ⊂ supp(p1), the p1-image of

the set {x ∈ dom(p1) \ dom(p0): x is algebraic over supp(p0) ∪ a} is in I.



4 Outline | 17

1 Introduction

2 Balanced Forcing

3 Define the poset P

4 The Theorem

5 Survey of Some Details in the Proof



4 The Main Theorem | 18

Theorem (Z., 2021)

Let κ be an inaccessible cardinal. There is a model of ZF + DC in which Γ2 has
countable chromatic number while for every non-meager set A ⊂ R3, A contains all
vertices of an isosceles triangle.
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Let W be the symmetric Solovay model derived from κ, and the model we need is the
P extension over W , and call it W [G], in which:
I “+”: Γ2 has countable chromatic number by our construction of P .
I “−”: for every non-meager set A ⊂ R3, A contains all vertices of an isosceles

triangle.
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Work in W . Suppose p ∈ P is a condition and let τ be a P-name for a nonmeager
subset of R3. We will find a Γ3-hyperedge e and a strengthening of the condition p
which forces e to be a subset of τ .
By the definition of the symmetric Solovay model W , the condition p as well as the
name τ must be definable from ground model parameters and an additional parameter
z ∈ 2ω.
Let V [K ] be an intermediate extension obtained by a forcing of cardinality smaller than
κ such that z, p ∈ V [K ] and that the Continuum Hypothesis holds.
(P is balanced in V [K ] by CH).
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Work in the model V [K ]. Let p̄ ≤ p be a balanced virtual condition in the poset P .
Consider the Cohen poset PR3 consisting of nonempty open subsets of R3 ordered by
inclusion, with its name ẋgen for a generic element of the space R3.

Claim
there must be a condition O ∈ PR3 , a poset Q of cardinality smaller than κ, and a
PR3 × Q-name σ for a condition in the poset P stronger than p̄ such that
O PR3 Q  Coll(ω,< κ)  σ P ẋgen ∈ τ

Otherwise, in the model W , the virtual condition p̄ would force τ to be disjoint from
the comeager set of points in R3 which are Cohen generic over the model V [K ],
contradicting the initial assumption that the name τ forced to be a non-meager set.
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Consider the Cohen forcing poset PΓ̄3
associated with the Polish space Γ̄3, and observe

that O3 is a condition in PΓ̄3
. Let e to be the a generic point of PΓ̄3

that meets O3.
Observe that for each vertex x ∈ e, x is PR3-generic, and each pair of vertices in e is
mutually generic, by the openness of some projection maps.
Let Hx ⊂ Q for x ∈ e be filters mutually generic over the model V [K ][e]. Work in the
model V [K ][e][Hx : x ∈ e].
Observe that
I the models V [K ][x ][Hx ] for x ∈ e form a ∆-system with the root V [K ];
I there is no isosceles triangle in R2 with one vertex in each model V [K ][x ][Hx ] for

x ∈ e respectively.
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Claim
Whenever for each vertex x ∈ e, px is a condition in V [K ][e][Hx ] such that px ≤ p̄ ,
the conditions px for x ∈ e have a common lower bound.

For each x ∈ e, write px = σ/x , which is a condition in V [K ][x ][Hx ].
By forcing theorem applied in the model V [K ][x ][Hx ], px ≤ p̄ is a condition forcing
x ∈ τ . By Claim, let q be a lower bound of the conditions px for x ∈ e.
We have produced a Γ3-hyperedge e and a condition q stronger than p which forces all
vertices of e to be in τ , as required.
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Claim
P has amalgamation property; therefore P is balanced under CH.
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Let Γ̄3 ⊂ (R3)3 be an ordered hypergraph for Γ3 with each middle coordinate to the
the pivot.
It is Gδ subset of (R3)3, hence a Polish space.
Consider the Cohen forcing poset PΓ̄3

adding a generic ordered hyperedge for Γ̄3.

Proposition
Let G ⊂ (Rn)m be Gδ and invariant under similarities of Rn. Then the projection of G
into any two coordinates is an open map to (Rn)2.
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Corollary
The projection of Γ̄3 to any two coordinates is an open map.

Corollary
Each pair of points in e are mutually generic over V for the product forcing PR3 × PR3 .
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This is for proving the claim in the main proof:

Claim
There is no isosceles triangle in R2 with one vertex in each model V [K ][x ][Hx ] for
x ∈ e respectively.

Definition
Define Gk ⊂ (Rn)k × (Rn)m−1 = (Rn)m+k−1 to be the ordered hypergraph of arity
m + k − 1 such that (x0i , xj)i∈k,j∈m−1 ∈ Gk if
(∀i ∈ k (x0i , xj)j∈m−1 ∈ G and all points x0i , i ∈ k are all in general position). We say
that the hypergraph Gk is obtained from G by the duplication of its 0th coordinate k
times.
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Proposition
The projection of Γ̄4

3 to the first four coordinates is an open map to (R3)4, since G is
stable against 4 vertices;
the projection to the last three coordinates is an open map to Γ̄3;
the projection to any two coordinates is an open map to (R3)2;

Corollary
Let e4 = (x0i , x1, x2 : i ∈ 4) be generic over V for the poset PΓ̄4

3
. Then

I the first four points in e4 are mutually generic over V for the product forcing P4
R3 .

I any two points in e4 are mutually generic over V for the product forcing PR3 × PR3 .
I ∀i ∈ 4, (x0i , x1, x2) is generic over V for the poset PΓ̄3

.



5 “−”: Open maps and duplicated hyperedge forcing | 30

Definition
Let G ⊂ (Rn)m. Let us say that G is stable against k vertices if the following holds.
Whenever x = {xi}i∈k ⊂ Rn is a set of points in general position, there is an open
neighborhood U ⊂ (Rn)k of the origin and a continuous functional Ψ : U → (Rn) such
that for each u = (ui)i∈k ∈ U:
1 Ψ(u) is a similarity of Rn;
2 Ψ(0) is the identity map;
3 ∀y1, y2, · · · , ym−1 ∈ Rn, if G(−, y1, y2, · · · , ym−1) ⊃ x , then

> Ψ(u) moves the section G(−, y1, y2, · · · , ym−1) to the section
G(−, Ψ(u)(y1), Ψ(u)(y2), · · · , Ψ(u)(ym−1));

> G(−, Ψ(u)(y1), Ψ(u)(y2), · · · , Ψ(u)(ym−1)) ⊃ {xi + ui}i∈k .

We call Ψ a similarity functional transferring points xi , i ∈ k for G .



5 The paper | 31

(submitted to JSL):
https://people.clas.ufl.edu/yuxinzhou/publications/

My email:
yuxinzhou@ufl.edu
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