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Measured group theory
I Geometric group theory studies geometric/structural/algebraic

properties of a countable group Γ.

I Measured group theory studies these properties on
average/probabilistically by considering free actions Γ y (X , µ) on a
standard probability space (often measure-preserving).

I While geometric group theory studies the groups up to quasi-isometry,
measured group theory studies them up to measure equivalence.

I This boils down to studying the actions Γ y (X , µ) up to orbit
equivalence, or more precisely, stable orbit equivalence.

I Actions Γ y (X , µ) and ∆ y (Y , ν) are called orbit equivalent if their
orbit equivalence relations EΓ and E∆ are measure isomorphic.

I In other words, we forget the action Γ y (X , µ) and look at the orbit
equivalence relation EΓ it generates.

I This brings us to the study of countable Borel equivalence relations on a
standard probability space (X , µ).
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Transfer: Group Γ � orbit equivalence relation EΓ

I Given a property of Γ, we find its counterpart for EΓ and it is often the
case that if the property holds for Γ, its counterpart holds for EΓ.

I Besides the fact that good properties often transfer, sometimes
pathological properties of groups disappear — the averaging smooths
them out.

I For example, the von Neumann–Day question (1957): If F2 ↪→ Γ,
then Γ is nonamenable. Is the converse true?

I Ol’shanski (1980): No! There are pathological nonamenable groups with
F2 6↪→ Γ.

I Gaboriau–Lyons (2013): Let Γ be a countable group and let EΓ be the
orbit equivalence relation of the Bernoulli shift Γ y [0, 1]Γ.

If Γ is nonamenable, then ∃ EF2 ⊆ EΓ,
where EF2 arises from an a.e. free ergodic action of F2.
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Schreier graphs and graphings
I Let (X , µ) be a standard probability space.

I A locally countable Borel graph G on X is just a Borel subset G ⊆ X 2, a
set of edges, such that each point in X has only countably-many
neighbors.

Example (Schreier graphs)
I Let Γ y (X , µ) be a Borel action of a countable group Γ
I and let S ⊆ Γ be a symmetric generating set.
I The Schreier graph G on X is defined by:

x G y ..⇔ s · x = y for some s ∈ S.

I The connected components of G are exactly the orbits of the action.

I Let E be a countable Borel equivalence relation on (X , µ).
I A graphing of E is a Borel graph G on X , whose connected components

are exactly the E -classes a.e.
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Dictionary: amenable groups � hyperfinite equivalence rel.

Actions of Z

Actions of amenable groups

Def. Admit an invariant mean, i.e.
fin. additive probability measure.

Hyperfinite equivalence rel. E

Def. E =
⋃
↑ n En, En finite Borel.

Amenable equivalence rel.

Def. Admit a measurable
bundle of invariant means,
i.e. ∃ measurable
X/E 3 C 7→ µC ,
where µC is a mean on C .
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Free actions of
free groups Fn, n 6 ∞

Treeable groups

Def. All free pmp actions
are treeable.
Examples. Virtually free groups,
surface groups, limit groups.

Treeable equivalence rel. E

Def. Admit an acyclic Borel
graphing (treeing), i.e. a locally
ctbl acyclic Borel graph T ,
whose components are exactly
the E -classes.
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Hyperfinite inside treeable
Let:
I (X , µ) be a standard probability space,

I E a treeable equivalence relation on X ,
I T be a treeing of E .

We would like to study hyperfinite subequivalence relations F of E and their
interaction with the treeing T .
An analogy to keep in mind is: a copy of Z inside Fn.

A probability measure preserving (pmp) example
I Let E be induced by any a.e. free pmp action of F2 = 〈a, b〉, say the

shift action F2 y 2F2 ,
I and let T be the standard Schreier graph of the action.
I Let F be induced by the action of any 1-generated subgroup of F2, say by

the element ab.
Note: the Schreier graph of the action of ab is not a subgraph of T .
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Hyperfinite inside treeable: questions
1 If Z0, Z1 are copies of Z inside Fn such that Z0 ∩ Z1 is nontrivial, then

〈Z0 ∪ Z1〉 is still a copy of Z.

2 Any copy Z of Z inside Fn is contained in a unique maximal copy
Z 6 Fn of Z.

Question: Do the analogues of these hold for the equivalence relations?
Answer (Bowen): Yes in the pmp setting.

Theorem (Bowen)
Let E be a treeable pmp equivalence relation on (X , µ).

1 If F0, F1 ⊆ E are hyperfinite and F0 ∩ F1 is µ-nowhere smooth
(=nontrivial), then F0 ∨ F1 is still hyperfinite.

2 Every µ-nowhere smooth hyperfinite F ⊆ E is contained in a unique
maximal hyperfinite F ⊆ E.

Question: Do these statements hold in the general (non-pmp) setting?
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End-selection
I Let E be a treeable equivalence relation on (X , µ), not necessarily pmp,

I T a treeing of E ,
I ∂T the space of ends of T , i.e. ∂T ..= Rays(T )/ ∼tail,
I F ⊆ E a µ-nowhere smooth (=nontrivial) subequivalence relation.

Definition
An end-selection is a map X 3 x 7→ Ex ⊆ ∂Tx , where Ex 6= ∅ is finite.
Say that x 7→ Ex is measurable if it lifts to a measurable map
x 7→ Ėx ⊆ Rays(T ).
Say that x 7→ Ex is F -invariant if x F y =⇒ Ex = Ey .

Theorem (Adams)
a If x 7→ Ex is an F -invariant measurable end-selection, then |Ex | 6 2.
b ∃ an F -invariant measurable end-selection ⇐⇒ F is hyperfinite

⇐⇒ ∃ a maximum x 7→ Ex , i.e. for any other x 7→ E ′
x , E ′

x ⊆ Ex .
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How are the ends selected?

Theorem (Adams)
a If x 7→ Ex is an F -invariant measurable end-selection, then |Ex | 6 2.
b ∃ an F -invariant measurable end-selection ⇐⇒ F is hyperfinite

⇐⇒ ∃ a maximum x 7→ Ex , i.e. for any other x 7→ E ′
x , E ′

x ⊆ Ex .

Question: How does each F -class decide which end(s) to select?

Answer: By the amenability of F , following where the mean is dominant.
Question: But, more constructively/geometrically, what’s so special about
these particular ends?
I In the example of E being induced by an a.e. free F2 y (X , µ) and F by

the action of the subgroup generated by ab, each F -class “spans” exactly
two ends.
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Structure (in the pmp setting)
I Let F ⊆ E and T be as before, and suppose F is hyperfinite.
I For each x ∈ X , let T[x ]F be the subtree of T spanned by the convex hull

of [x ]F :

Observations (Ts.–Tucker-Drob)
Let x 7→ Ex be the maximum F-invariant end-selection.

1 Ex ⊆ ∂T[x ]F .
2 If E is pmp, then Ex = ∂T[x ]F a.e., i.e. a.e. F -class spans exactly the

ends that it maximally selects.
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Corollaries (in the pmp setting)

Observation (Ts.–Tucker-Drob)
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This immediately implies:
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F0 ∨ F1 is still hyperfinite.

2 Every µ-nowhere smooth hyperfinite F ⊆ E is contained in a unique
maximal hyperfinite F ⊆ E.
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maximal hyperfinite F ⊆ E.

Question: Do these statements hold in the general (non-pmp) setting?
Problem: The observation above fails in the non-pmp setting!
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A non-pmp counter-example to Observation
I Let ∂F2 be the boundary of F2, i.e. the set of all reduced infinite words,

like x ..= aba−1bb . . .

I F2 acts on ∂F2 by concatenation: w · x ..= wx , w ∈ F2 and x ∈ ∂F2.
I Let E be induced by the natural action of F2 on its boundary ∂F2
I and let T be the standard Schreier graph of the action.
I E is also induced by the left-shift θ : ∂F2 → ∂F2 given by (xn) 7→ (xn+1),

i.e. the graph of θ is an oriented version of T :

I Thus, E is actually hyperfinite because each E -class selects one end in
the direction of θ.

I We can take F ..= E , so each F -class spans continuum-many ends, yet
selects one!
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A non-pmp counter-example to Observation (continued)

I But how does the equivalence relation E know about this θ-directing?

I There don’t exist any F2-invariant probability measures on ∂F2,
I but there many probability measures such that the F2-action is

null-preserving.
I Define a probability measure µ on ∂F2 by giving equal probability to

every possible letter in each coordinate:

I The Radon–Nikodym cocycle dµ(y)
dµ(x) grows in the direction of the shift:

dµ(θn(x))
dµ(x) = 3n → ∞.
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Main result
I Let E be a treeable equivalence relation on (X , µ), typically non-pmp,
I and let T be a treeing of E .

I We may assume WLOG that E is null-preserving and hence, there is a
“correction of non-invariance”, the so-called Radon–Nikodym cocycle.

Theorem (Ts.–Tucker-Drob)
A complete analysis of a hyperfinite subequivalence relation F ⊆ E in terms
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Quasi-pmp equivalence relations

I Given a measurable E on a probability space (X , µ), we may write
E = EΓ for some countable Γ = {γn} and measurable Γ y (X , µ)
(Feldman–Moore).

I Replacing µ with µ′ ..=
∑

n 2−(n+1)γn∗µ and assume that E is quasi-pmp
(i.e. null-preserving).

I E on (X , µ) is quasi-pmp if each γ ∈ [[E ]] (i.e. Borel injection
γ : A ↪→ X with x E γx) is null-preserving.

I To a quasi-pmp E , we can associate the so-called Radon–Nikodym
cocycle: a unique Borel ρ : E → R+ such that

1 it satisfies the cocycle identity: for E -equivalent x , y , z ∈ X ,
ρ(z , y) · ρ(y , x) = ρ(z , x)

q q q
dµ(z)
dµ(y) · dµ(y)

dµ(x) = dµ(z)
dµ(x) .

2 it is µ-invariant: µ(γA) =
∫

A
dµ(γx)
dµ(x) dµ(x).
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Main Structural Theorem (Ts.–Tucker-Drob): loxodromic case

I Let E be a quasi-pmp equivalence relation on (X , µ) with
Radon–Nikodym cocycle ρ (write dµ(y)

dµ(x)
..= ρ(y , x)),

I T a treeing of E ,
I F ⊆ E a hyperfinite subequivalence relation,
I x 7→ Ex the maximum F -invariant measurable end-selection in T .
Suppose F is T -loxodromic, i.e. Ex = {ξ−

x , ξ+
x } a.s.

Then, essentially:
1 Each F -class [x ]F spans exactly two ends of T , namely ξ−

x and ξ+
x ,

2 and

lim inf
y→ξ−

x

dµ(y)
dµ(x) = lim inf

y→ξ+
x

dµ(y)
dµ(x) < ∞ (typically = 0)

lim sup
y→ξ−

x

dµ(y)
dµ(x) = lim sup

y→ξ+
x

dµ(y)
dµ(x) > 0 (typically = ∞).

3 In fact, if lim inf > 0 or lim sup < ∞, then ρ is a coboundary.
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Main Structural Theorem (Ts.–Tucker-Drob): parabolic case

Suppose F is T -parabolic, i.e. Ex = {ξ+
x } a.s.

Then, there is an acyclic Borel function θ : X → X inducing F such that
i limn→∞ θn(x) = ξ+

x a.s.
ii Tθ|[x ]F and T[x ]F have the same ends (∃ a canonical homeomorphism).

Furthermore, X is partitioned into F -invariant sets X1 t X∞, where
1 Tθ|X1 is essentially 1-ended.
2 Tθ|X∞ is µ-nowhere essentially 1-ended, and

lim sup
y→ξ+

x

dµ(y)
dµ(x) = ∞,

whereas, for any other end ξ− ∈ ∂Tθ|[x ]F ,

lim
y→ξ−

dµ(y)
dµ(x) = 0.

That’s why ξ+
x was selected!
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Fun ingredient: ping-pong rooted at ∞

Lemma (Ts.–Tucker-Drob)
I Let Σ be a set of permutations of a set V .

I Let T be a tree on V and ξ+ ∈ ∂T such that for each v ∈ V ,
i v ∈ (σ−1(v), ξ+)T for all σ ∈ Σ;
ii v ∈ (σ−1(v), τ−1(v)) for all distinct σ, τ ∈ Σ.

Then Σ generates a free group, whose action on V is free.
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Thanks!


