Hyperfinite subequivalence relations of treed equivalence relations

Anush Tserunyan

University of Illinois at Urbana-Champaign

(Joint work with Robin Tucker-Drob)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Geometric group theory studies geometric/structural/algebraic properties of a countable group Γ.

- **Geometric group theory** studies geometric/structural/algebraic properties of a countable group Γ.
- Measured group theory studies these properties on average/probabilistically by considering free actions Γ ~ (X, μ) on a standard probability space (often measure-preserving).

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

- Geometric group theory studies geometric/structural/algebraic properties of a countable group Γ.
- Measured group theory studies these properties on average/probabilistically by considering free actions Γ ~ (X, μ) on a standard probability space (often measure-preserving).
- While geometric group theory studies the groups up to quasi-isometry, measured group theory studies them up to measure equivalence.

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

- Geometric group theory studies geometric/structural/algebraic properties of a countable group Γ.
- Measured group theory studies these properties on average/probabilistically by considering free actions Γ ~ (X, μ) on a standard probability space (often measure-preserving).
- While geometric group theory studies the groups up to quasi-isometry, measured group theory studies them up to measure equivalence.
- ► This boils down to studying the actions $\Gamma \curvearrowright (X, \mu)$ up to orbit equivalence, or more precisely, stable orbit equivalence.

- Geometric group theory studies geometric/structural/algebraic properties of a countable group Γ.
- Measured group theory studies these properties on average/probabilistically by considering free actions Γ ~ (X, μ) on a standard probability space (often measure-preserving).
- While geometric group theory studies the groups up to quasi-isometry, measured group theory studies them up to measure equivalence.
- ► This boils down to studying the actions $\Gamma \curvearrowright (X, \mu)$ up to orbit equivalence, or more precisely, stable orbit equivalence.
- Actions Γ → (X, μ) and Δ → (Y, ν) are called orbit equivalent if their orbit equivalence relations E_Γ and E_Δ are measure isomorphic.

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

- Geometric group theory studies geometric/structural/algebraic properties of a countable group Γ.
- Measured group theory studies these properties on average/probabilistically by considering free actions Γ ~ (X, μ) on a standard probability space (often measure-preserving).
- While geometric group theory studies the groups up to quasi-isometry, measured group theory studies them up to measure equivalence.
- ► This boils down to studying the actions $\Gamma \curvearrowright (X, \mu)$ up to orbit equivalence, or more precisely, stable orbit equivalence.
- Actions Γ → (X, μ) and Δ → (Y, ν) are called orbit equivalent if their orbit equivalence relations E_Γ and E_Δ are measure isomorphic.
- ▶ In other words, we forget the action $\Gamma \curvearrowright (X, \mu)$ and look at the orbit equivalence relation E_{Γ} it generates.

- **Geometric group theory** studies geometric/structural/algebraic properties of a countable group Γ.
- Measured group theory studies these properties on average/probabilistically by considering free actions Γ ~ (X, μ) on a standard probability space (often measure-preserving).
- While geometric group theory studies the groups up to quasi-isometry, measured group theory studies them up to measure equivalence.
- ► This boils down to studying the actions $\Gamma \curvearrowright (X, \mu)$ up to orbit equivalence, or more precisely, stable orbit equivalence.
- Actions $\Gamma \curvearrowright (X, \mu)$ and $\Delta \curvearrowright (Y, \nu)$ are called orbit equivalent if their orbit equivalence relations E_{Γ} and E_{Δ} are measure isomorphic.
- ▶ In other words, we forget the action $\Gamma \curvearrowright (X, \mu)$ and look at the orbit equivalence relation E_{Γ} it generates.
- This brings us to the study of countable Borel equivalence relations on a standard probability space (X, μ).

Given a property of Γ, we find its counterpart for E_{Γ} and it is often the case that if the property holds for Γ, its counterpart holds for E_{Γ} .

- Given a property of Γ, we find its counterpart for E_{Γ} and it is often the case that if the property holds for Γ, its counterpart holds for E_{Γ} .
- Besides the fact that good properties often transfer, sometimes pathological properties of groups disappear — the averaging smooths them out.

- Given a property of Γ, we find its counterpart for E_{Γ} and it is often the case that if the property holds for Γ, its counterpart holds for E_{Γ} .
- Besides the fact that good properties often transfer, sometimes pathological properties of groups disappear — the averaging smooths them out.
- For example, the von Neumann–Day question (1957): If 𝔽₂ → Γ, then Γ is nonamenable. Is the converse true?

- Given a property of Γ, we find its counterpart for E_{Γ} and it is often the case that if the property holds for Γ, its counterpart holds for E_{Γ} .
- Besides the fact that good properties often transfer, sometimes pathological properties of groups disappear — the averaging smooths them out.
- For example, the **von Neumann–Day question** (1957): If $\mathbb{F}_2 \hookrightarrow \Gamma$, then Γ is nonamenable. Is the converse true?
- ► **Ol'shanski** (1980): No! There are pathological nonamenable groups with $\mathbb{F}_2 \nleftrightarrow \Gamma$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Given a property of Γ, we find its counterpart for E_{Γ} and it is often the case that if the property holds for Γ, its counterpart holds for E_{Γ} .
- Besides the fact that good properties often transfer, sometimes pathological properties of groups disappear — the averaging smooths them out.
- For example, the von Neumann–Day question (1957): If 𝔽₂ → Γ, then Γ is nonamenable. Is the converse true?
- ► **Ol'shanski** (1980): No! There are pathological nonamenable groups with $\mathbb{F}_2 \nleftrightarrow \Gamma$.
- **Gaboriau–Lyons** (2013): Let Γ be a countable group and let E_{Γ} be the orbit equivalence relation of the Bernoulli shift $\Gamma \curvearrowright [0, 1]^{\Gamma}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Given a property of Γ, we find its counterpart for E_{Γ} and it is often the case that if the property holds for Γ, its counterpart holds for E_{Γ} .
- Besides the fact that good properties often transfer, sometimes pathological properties of groups disappear — the averaging smooths them out.
- For example, the **von Neumann–Day question** (1957): If $\mathbb{F}_2 \hookrightarrow \Gamma$, then Γ is nonamenable. Is the converse true?
- ▶ Ol'shanski (1980): No! There are pathological nonamenable groups with $\mathbb{F}_2 \nleftrightarrow \Gamma$.
- **Gaboriau–Lyons** (2013): Let Γ be a countable group and let E_{Γ} be the orbit equivalence relation of the Bernoulli shift $\Gamma \curvearrowright [0,1]^{\Gamma}$.

If Γ is nonamenable, then $\exists E_{\mathbb{F}_2} \subseteq E_{\Gamma}$,

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

- Given a property of Γ, we find its counterpart for E_{Γ} and it is often the case that if the property holds for Γ, its counterpart holds for E_{Γ} .
- Besides the fact that good properties often transfer, sometimes pathological properties of groups disappear — the averaging smooths them out.
- For example, the **von Neumann–Day question** (1957): If $\mathbb{F}_2 \hookrightarrow \Gamma$, then Γ is nonamenable. Is the converse true?
- ▶ Ol'shanski (1980): No! There are pathological nonamenable groups with $\mathbb{F}_2 \nleftrightarrow \Gamma$.
- **Gaboriau–Lyons** (2013): Let Γ be a countable group and let E_{Γ} be the orbit equivalence relation of the Bernoulli shift $\Gamma \curvearrowright [0,1]^{\Gamma}$.

If Γ is nonamenable, then $\exists E_{\mathbb{F}_2} \subseteq E_{\Gamma}$,

where $E_{\mathbb{F}_2}$ arises from an a.e. free ergodic action of \mathbb{F}_2 .

• Let (X, μ) be a standard probability space.

- Let (X, μ) be a standard probability space.
- A locally countable Borel graph G on X is just a Borel subset G ⊆ X², a set of edges, such that each point in X has only countably-many neighbors.

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

- Let (X, μ) be a standard probability space.
- A locally countable Borel graph G on X is just a Borel subset G ⊆ X², a set of edges, such that each point in X has only countably-many neighbors.

Example (Schreier graphs)

• Let $\Gamma \curvearrowright (X, \mu)$ be a Borel action of a countable group Γ

- Let (X, μ) be a standard probability space.
- A locally countable Borel graph G on X is just a Borel subset G ⊆ X², a set of edges, such that each point in X has only countably-many neighbors.

・ロト ・日ト ・日ト ・日 ・ うへや

Example (Schreier graphs)

- Let $\Gamma \curvearrowright (X,\mu)$ be a Borel action of a countable group Γ
- and let $S \subseteq \Gamma$ be a symmetric generating set.

- Let (X, μ) be a standard probability space.
- A locally countable Borel graph G on X is just a Borel subset G ⊆ X², a set of edges, such that each point in X has only countably-many neighbors.

Example (Schreier graphs)

- Let $\Gamma \curvearrowright (X, \mu)$ be a Borel action of a countable group Γ
- and let $S \subseteq \Gamma$ be a symmetric generating set.

The Schreier graph G on X is defined by:

 $x G y :\Leftrightarrow s \cdot x = y$ for some $s \in S$.

- Let (X, μ) be a standard probability space.
- A locally countable Borel graph G on X is just a Borel subset G ⊆ X², a set of edges, such that each point in X has only countably-many neighbors.

Example (Schreier graphs)

- Let $\Gamma \curvearrowright (X, \mu)$ be a Borel action of a countable group Γ
- and let $S \subseteq \Gamma$ be a symmetric generating set.

► The Schreier graph *G* on *X* is defined by:

$$x G y \Leftrightarrow s \cdot x = y$$
 for some $s \in S$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The connected components of G are exactly the orbits of the action.

- Let (X, μ) be a standard probability space.
- A locally countable Borel graph G on X is just a Borel subset G ⊆ X², a set of edges, such that each point in X has only countably-many neighbors.

Example (Schreier graphs)

- Let $\Gamma \curvearrowright (X, \mu)$ be a Borel action of a countable group Γ
- and let $S \subseteq \Gamma$ be a symmetric generating set.

The Schreier graph G on X is defined by:

 $x G y :\Leftrightarrow s \cdot x = y$ for some $s \in S$.

► The connected components of *G* are exactly the orbits of the action.

Let *E* be a countable Borel equivalence relation on (X, μ) .

- Let (X, μ) be a standard probability space.
- A locally countable Borel graph G on X is just a Borel subset G ⊆ X², a set of edges, such that each point in X has only countably-many neighbors.

Example (Schreier graphs)

- Let $\Gamma \curvearrowright (X, \mu)$ be a Borel action of a countable group Γ
- and let $S \subseteq \Gamma$ be a symmetric generating set.

The Schreier graph G on X is defined by:

 $x G y :\Leftrightarrow s \cdot x = y$ for some $s \in S$.

The connected components of G are exactly the orbits of the action.

- Let *E* be a countable Borel equivalence relation on (X, μ) .
- A graphing of E is a Borel graph G on X, whose connected components are exactly the E-classes a.e.

Actions of $\ensuremath{\mathbb{Z}}$

Hyperfinite equivalence rel. E

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

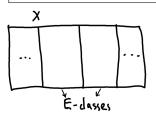
Actions of $\ensuremath{\mathbb{Z}}$

Hyperfinite equivalence rel. E

Def. $E = \bigoplus_n E_n$, E_n finite Borel.

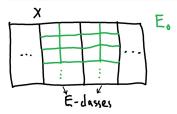
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Hyperfinite equivalence rel. *E*
Def.
$$E = |\uparrow|_n E_n$$
, E_n finite Borel



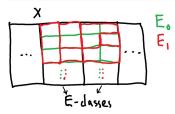
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Hyperfinite equivalence rel. *E*
Def.
$$E = \bigoplus_n E_n$$
, E_n finite Borel.



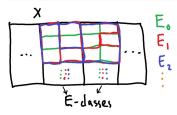
◆□▶ ◆□▶ ◆三≯ ◆三≯ 三三 の々で

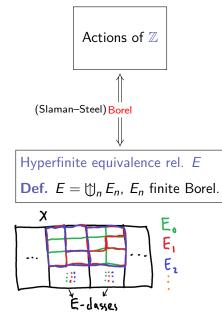
Hyperfinite equivalence rel. *E*
Def.
$$E = \bigoplus_n E_n$$
, E_n finite Borel.

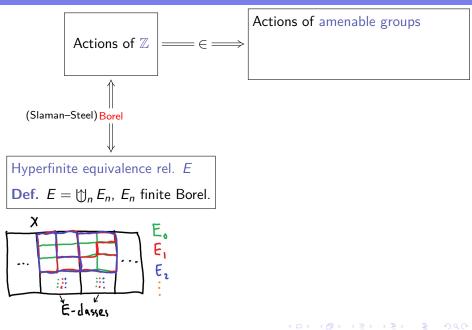


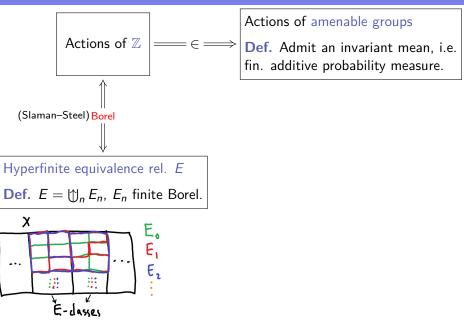
◆□▶ ◆□▶ ◆三≯ ◆三≯ 三三 の々で

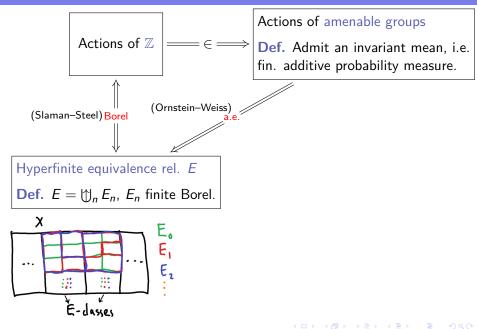
Hyperfinite equivalence rel. *E*
Def.
$$E = \bigoplus_n E_n$$
, E_n finite Borel.

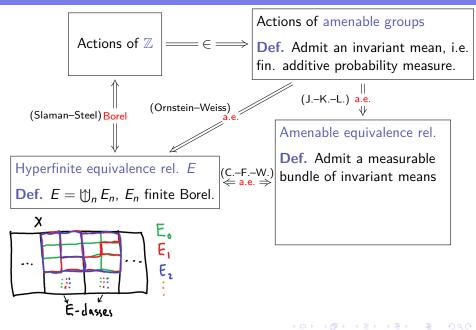


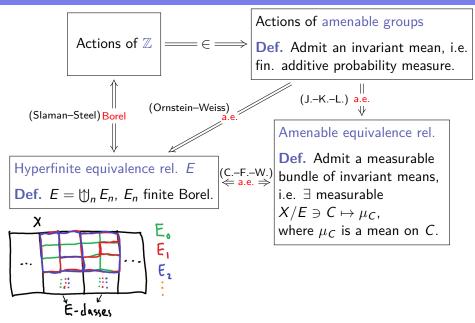












Free actions of

free groups \mathbb{F}_n , $n \leqslant \infty$

Free actions of

free groups \mathbb{F}_n , $n \leq \infty$

Treeable equivalence rel. E

<ロ> (四) (四) (三) (三) (三) (三)

Free actions of

free groups \mathbb{F}_n , $n \leqslant \infty$

Treeable equivalence rel. E

Def. Admit an acyclic Borel graphing (treeing)

Free actions of

free groups \mathbb{F}_n , $n \leqslant \infty$

Treeable equivalence rel. E

Def. Admit an acyclic Borel graphing (treeing), i.e. a locally ctbl acyclic Borel graph T, whose components are exactly the *E*-classes.

Free actions of

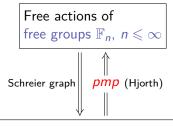
free groups \mathbb{F}_n , $n \leq \infty$

Schreier graph

Treeable equivalence rel. E

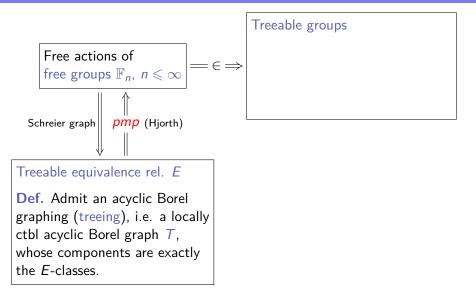
Def. Admit an acyclic Borel graphing (treeing), i.e. a locally ctbl acyclic Borel graph T, whose components are exactly the *E*-classes.

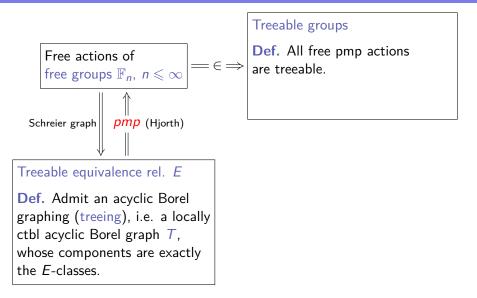
<ロ> (四) (四) (三) (三) (三) (三)



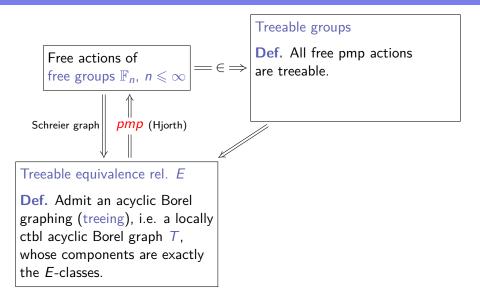
Treeable equivalence rel. E

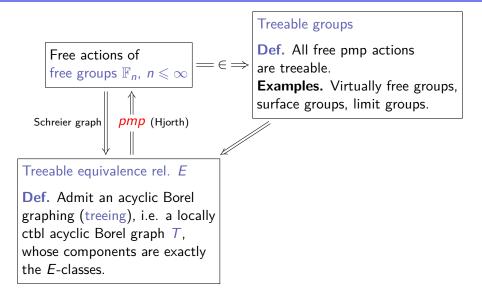
Def. Admit an acyclic Borel graphing (treeing), i.e. a locally ctbl acyclic Borel graph T, whose components are exactly the *E*-classes.





<ロ> (四) (四) (三) (三) (三) (三)





Hyperfinite inside treeable

Let: ► (X, µ) be a standard probability space,

Hyperfinite inside treeable

Let:

- (X, μ) be a standard probability space,
- \triangleright E a treeable equivalence relation on X,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Hyperfinite inside treeable

Let:

- (X, μ) be a standard probability space,
- \triangleright E a treeable equivalence relation on X,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

 \blacktriangleright T be a treeing of E.

- (X, μ) be a standard probability space,
- \blacktriangleright *E* a treeable equivalence relation on *X*,
- T be a treeing of E.

We would like to study hyperfinite subequivalence relations F of E and their interaction with the treeing T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- (X, μ) be a standard probability space,
- \triangleright *E* a treeable equivalence relation on *X*,
- \triangleright T be a treeing of E.

We would like to study hyperfinite subequivalence relations F of E and their interaction with the treeing T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

An analogy to keep in mind is: a copy of \mathbb{Z} inside \mathbb{F}_n .

- (X, μ) be a standard probability space,
- E a treeable equivalence relation on X,
- T be a treeing of E.

We would like to study hyperfinite subequivalence relations F of E and their interaction with the treeing T.

An analogy to keep in mind is: a copy of \mathbb{Z} inside \mathbb{F}_n .

A probability measure preserving (pmp) example

Let E be induced by any a.e. free pmp action of F₂ = ⟨a, b⟩, say the shift action F₂ → 2^{F₂},

- (X, μ) be a standard probability space,
- E a treeable equivalence relation on X,
- T be a treeing of E.

We would like to study hyperfinite subequivalence relations F of E and their interaction with the treeing T.

An analogy to keep in mind is: a copy of \mathbb{Z} inside \mathbb{F}_n .

A probability measure preserving (pmp) example

- Let E be induced by any a.e. free pmp action of F₂ = ⟨a, b⟩, say the shift action F₂ ∩ 2^{F₂},
- ▶ and let *T* be the standard Schreier graph of the action.

- (X, μ) be a standard probability space,
- E a treeable equivalence relation on X,
- T be a treeing of E.

We would like to study hyperfinite subequivalence relations F of E and their interaction with the treeing T.

An analogy to keep in mind is: a copy of \mathbb{Z} inside \mathbb{F}_n .

A probability measure preserving (pmp) example

- Let E be induced by any a.e. free pmp action of F₂ = ⟨a, b⟩, say the shift action F₂ ∩ 2^{F₂},
- and let T be the standard Schreier graph of the action.
- Let F be induced by the action of any 1-generated subgroup of \mathbb{F}_2 , say by the element *ab*.

- (X, μ) be a standard probability space,
- E a treeable equivalence relation on X,
- ▶ T be a treeing of E.

We would like to study hyperfinite subequivalence relations F of E and their interaction with the treeing T.

An analogy to keep in mind is: a copy of \mathbb{Z} inside \mathbb{F}_n .

A probability measure preserving (pmp) example

- Let E be induced by any a.e. free pmp action of F₂ = ⟨a, b⟩, say the shift action F₂ ∩ 2^{F₂},
- ▶ and let *T* be the standard Schreier graph of the action.
- Let *F* be induced by the action of any 1-generated subgroup of \mathbb{F}_2 , say by the element *ab*.

Note: the Schreier graph of the action of ab is not a subgraph of T.

If Z₀, Z₁ are copies of Z inside F_n such that Z₀ ∩ Z₁ is nontrivial, then ⟨Z₀ ∪ Z₁⟩ is still a copy of Z.

If Z₀, Z₁ are copies of Z inside F_n such that Z₀ ∩ Z₁ is nontrivial, then ⟨Z₀ ∪ Z₁⟩ is still a copy of Z.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Any copy Z of \mathbb{Z} inside \mathbb{F}_n is contained in a unique maximal copy $\overline{Z} \leq \mathbb{F}_n$ of \mathbb{Z} .

- If Z₀, Z₁ are copies of Z inside F_n such that Z₀ ∩ Z₁ is nontrivial, then ⟨Z₀ ∪ Z₁⟩ is still a copy of Z.
- Any copy Z of \mathbb{Z} inside \mathbb{F}_n is contained in a unique maximal copy $\overline{Z} \leq \mathbb{F}_n$ of \mathbb{Z} .

Question: Do the analogues of these hold for the equivalence relations?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- If Z₀, Z₁ are copies of Z inside F_n such that Z₀ ∩ Z₁ is nontrivial, then ⟨Z₀ ∪ Z₁⟩ is still a copy of Z.
- Any copy Z of \mathbb{Z} inside \mathbb{F}_n is contained in a unique maximal copy $\overline{Z} \leq \mathbb{F}_n$ of \mathbb{Z} .

Question: Do the analogues of these hold for the equivalence relations? Answer (Bowen): Yes in the pmp setting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- If Z₀, Z₁ are copies of Z inside F_n such that Z₀ ∩ Z₁ is nontrivial, then ⟨Z₀ ∪ Z₁⟩ is still a copy of Z.
- Any copy Z of \mathbb{Z} inside \mathbb{F}_n is contained in a unique maximal copy $\overline{Z} \leq \mathbb{F}_n$ of \mathbb{Z} .

Question: Do the analogues of these hold for the equivalence relations? Answer (Bowen): Yes in the pmp setting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Theorem (Bowen)

Let E be a treeable pmp equivalence relation on (X, μ) .

- If Z₀, Z₁ are copies of Z inside F_n such that Z₀ ∩ Z₁ is nontrivial, then ⟨Z₀ ∪ Z₁⟩ is still a copy of Z.
- Any copy Z of \mathbb{Z} inside \mathbb{F}_n is contained in a unique maximal copy $\overline{Z} \leq \mathbb{F}_n$ of \mathbb{Z} .

Question: Do the analogues of these hold for the equivalence relations? Answer (Bowen): Yes in the pmp setting.

Theorem (Bowen)

Let *E* be a treeable *pmp* equivalence relation on (X, μ) .

• If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth (=nontrivial), then $F_0 \lor F_1$ is still hyperfinite.

- If Z₀, Z₁ are copies of Z inside F_n such that Z₀ ∩ Z₁ is nontrivial, then ⟨Z₀ ∪ Z₁⟩ is still a copy of Z.
- Any copy Z of \mathbb{Z} inside \mathbb{F}_n is contained in a unique maximal copy $\overline{Z} \leq \mathbb{F}_n$ of \mathbb{Z} .

Question: Do the analogues of these hold for the equivalence relations? Answer (Bowen): Yes in the pmp setting.

Theorem (Bowen)

Let E be a treeable pmp equivalence relation on (X, μ) .

- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth (=nontrivial), then $F_0 \lor F_1$ is still hyperfinite.
- e Every µ-nowhere smooth hyperfinite F ⊆ E is contained in a unique maximal hyperfinite F ⊆ E.

- If Z₀, Z₁ are copies of Z inside F_n such that Z₀ ∩ Z₁ is nontrivial, then ⟨Z₀ ∪ Z₁⟩ is still a copy of Z.
- Any copy Z of \mathbb{Z} inside \mathbb{F}_n is contained in a unique maximal copy $\overline{Z} \leq \mathbb{F}_n$ of \mathbb{Z} .

Question: Do the analogues of these hold for the equivalence relations? Answer (Bowen): Yes in the pmp setting.

Theorem (Bowen)

Let E be a treeable pmp equivalence relation on (X, μ) .

- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth (=nontrivial), then $F_0 \lor F_1$ is still hyperfinite.
- Solution Every μ -nowhere smooth hyperfinite $F \subseteq E$ is contained in a unique maximal hyperfinite $\overline{F} \subseteq E$.

Question: Do these statements hold in the general (non-pmp) setting?

Let *E* be a treeable equivalence relation on (X, μ) , not necessarily pmp,

▶ Let *E* be a treeable equivalence relation on (X, μ) , not necessarily pmp,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

> T a treeing of E,

Let *E* be a treeable equivalence relation on (X, μ) , not necessarily pmp,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- T a treeing of E,
- ▶ ∂T the space of ends of T, i.e. $\partial T := \operatorname{Rays}(T) / \sim_{\operatorname{tail}}$,

Let *E* be a treeable equivalence relation on (X, μ) , not necessarily pmp,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- T a treeing of E,
- ▶ ∂T the space of ends of *T*, i.e. $\partial T := \operatorname{Rays}(T) / \sim_{\operatorname{tail}}$,
- F \subseteq *E* a μ -nowhere smooth (=nontrivial) subequivalence relation.

- ▶ Let E be a treeable equivalence relation on (X, μ) , not necessarily pmp,
- T a treeing of E,
- ▶ ∂T the space of ends of *T*, i.e. $\partial T := \text{Rays}(T) / \sim_{\text{tail}}$,
- F \subseteq *E* a μ -nowhere smooth (=nontrivial) subequivalence relation.

Definition

• An end-selection is a map $X \ni x \mapsto \mathcal{E}_x \subseteq \partial T_x$, where $\mathcal{E}_x \neq \emptyset$ is finite.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- ▶ Let E be a treeable equivalence relation on (X, μ) , not necessarily pmp,
- T a treeing of E,
- ▶ ∂T the space of ends of *T*, i.e. $\partial T := \text{Rays}(T) / \sim_{\text{tail}}$,
- F \subseteq *E* a μ -nowhere smooth (=nontrivial) subequivalence relation.

Definition

• An end-selection is a map $X \ni x \mapsto \mathcal{E}_x \subseteq \partial T_x$, where $\mathcal{E}_x \neq \emptyset$ is finite.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

 Say that x → E_x is measurable if it lifts to a measurable map x → E_x ⊆ Rays(T).

- ▶ Let E be a treeable equivalence relation on (X, μ) , not necessarily pmp,
- T a treeing of E,
- ▶ ∂T the space of ends of *T*, i.e. $\partial T := \text{Rays}(T) / \sim_{\text{tail}}$,
- F \subseteq *E* a μ -nowhere smooth (=nontrivial) subequivalence relation.

Definition

• An end-selection is a map $X \ni x \mapsto \mathcal{E}_x \subseteq \partial T_x$, where $\mathcal{E}_x \neq \emptyset$ is finite.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- Say that x → E_x is measurable if it lifts to a measurable map x → Ė_x ⊆ Rays(T).
- Say that $x \mapsto \mathcal{E}_x$ is *F*-invariant if $x \not F y \implies \mathcal{E}_x = \mathcal{E}_y$.

- ▶ Let E be a treeable equivalence relation on (X, μ) , not necessarily pmp,
- T a treeing of E,
- ▶ ∂T the space of ends of *T*, i.e. $\partial T := \operatorname{Rays}(T) / \sim_{\operatorname{tail}}$,
- F \subseteq *E* a μ -nowhere smooth (=nontrivial) subequivalence relation.

Definition

- An end-selection is a map $X \ni x \mapsto \mathcal{E}_x \subseteq \partial T_x$, where $\mathcal{E}_x \neq \emptyset$ is finite.
- Say that x → E_x is measurable if it lifts to a measurable map x → E_x ⊆ Rays(T).
- Say that $x \mapsto \mathcal{E}_x$ is *F*-invariant if $x \not F y \implies \mathcal{E}_x = \mathcal{E}_y$.

Theorem (Adams)

9 If $x \mapsto \mathcal{E}_x$ is an *F*-invariant measurable end-selection, then $|\mathcal{E}_x| \leq 2$.

- ▶ Let E be a treeable equivalence relation on (X, μ) , not necessarily pmp,
- T a treeing of E,
- ▶ ∂T the space of ends of *T*, i.e. $\partial T := \operatorname{Rays}(T) / \sim_{\operatorname{tail}}$,
- F \subseteq *E* a μ -nowhere smooth (=nontrivial) subequivalence relation.

Definition

- An end-selection is a map $X \ni x \mapsto \mathcal{E}_x \subseteq \partial T_x$, where $\mathcal{E}_x \neq \emptyset$ is finite.
- Say that x → E_x is measurable if it lifts to a measurable map x → Ė_x ⊆ Rays(T).
- Say that $x \mapsto \mathcal{E}_x$ is *F*-invariant if $x \not F y \implies \mathcal{E}_x = \mathcal{E}_y$.

Theorem (Adams)

- **9** If $x \mapsto \mathcal{E}_x$ is an *F*-invariant measurable end-selection, then $|\mathcal{E}_x| \leq 2$.
- **(**) \exists an *F*-invariant measurable end-selection \iff *F* is hyperfinite

End-selection

- ▶ Let *E* be a treeable equivalence relation on (X, μ) , not necessarily pmp,
- T a treeing of E,
- ▶ ∂T the space of ends of *T*, i.e. $\partial T := \operatorname{Rays}(T) / \sim_{\operatorname{tail}}$,
- F \subseteq *E* a μ -nowhere smooth (=nontrivial) subequivalence relation.

Definition

- An end-selection is a map $X \ni x \mapsto \mathcal{E}_x \subseteq \partial T_x$, where $\mathcal{E}_x \neq \emptyset$ is finite.
- Say that x → E_x is measurable if it lifts to a measurable map x → Ė_x ⊆ Rays(T).
- Say that $x \mapsto \mathcal{E}_x$ is *F*-invariant if $x \not F y \implies \mathcal{E}_x = \mathcal{E}_y$.

Theorem (Adams)

- **9** If $x \mapsto \mathcal{E}_x$ is an *F*-invariant measurable end-selection, then $|\mathcal{E}_x| \leq 2$.
- **○** \exists an *F*-invariant measurable end-selection \iff *F* is hyperfinite $\iff \exists$ a maximum $x \mapsto \mathcal{E}_x$, i.e. for any other $x \mapsto \mathcal{E}'_x$, $\mathcal{E}'_y \subseteq \mathcal{E}_x$.

Theorem (Adams)

• If $x \mapsto \mathcal{E}_x$ is an *F*-invariant measurable end-selection, then $|\mathcal{E}_x| \leq 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

○ ∃ an *F*-invariant measurable end-selection \iff *F* is hyperfinite \iff ∃ a maximum $x \mapsto \mathcal{E}_x$, i.e. for any other $x \mapsto \mathcal{E}'_x$, $\mathcal{E}'_x \subseteq \mathcal{E}_x$.

Question: How does each F-class decide which end(s) to select?

Theorem (Adams)

- If $x \mapsto \mathcal{E}_x$ is an F-invariant measurable end-selection, then $|\mathcal{E}_x| \leq 2$.
- ∃ an *F*-invariant measurable end-selection \iff *F* is hyperfinite \iff ∃ a maximum $x \mapsto \mathcal{E}_x$, i.e. for any other $x \mapsto \mathcal{E}'_x$, $\mathcal{E}'_x \subseteq \mathcal{E}_x$.

Question: How does each F-class decide which end(s) to select? Answer: By the amenability of F, following where the mean is dominant.

Theorem (Adams)

- If $x \mapsto \mathcal{E}_x$ is an F-invariant measurable end-selection, then $|\mathcal{E}_x| \leq 2$.
- **○** \exists an *F*-invariant measurable end-selection \iff *F* is hyperfinite $\iff \exists$ a maximum $x \mapsto \mathcal{E}_x$, i.e. for any other $x \mapsto \mathcal{E}'_x$, $\mathcal{E}'_x \subseteq \mathcal{E}_x$.

Question: How does each F-class decide which end(s) to select? Answer: By the amenability of F, following where the mean is dominant. Question: But, more constructively/geometrically, what's so special about these particular ends?

Theorem (Adams)

- If $x \mapsto \mathcal{E}_x$ is an F-invariant measurable end-selection, then $|\mathcal{E}_x| \leq 2$.
- \exists an *F*-invariant measurable end-selection \iff *F* is hyperfinite
 - $\iff \exists \text{ a maximum } x \mapsto \mathcal{E}_x \text{, i.e. for any other } x \mapsto \mathcal{E}'_x \text{, } \mathcal{E}'_x \subseteq \mathcal{E}_x.$

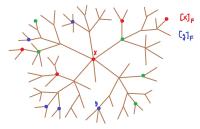
Question: How does each *F*-class decide which end(s) to select?

Answer: By the amenability of F, following where the mean is dominant.

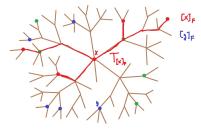
Question: But, more constructively/geometrically, what's so special about these particular ends?

In the example of E being induced by an a.e. free 𝔽₂ ¬ (X, µ) and F by the action of the subgroup generated by *ab*, each F-class "spans" exactly two ends.

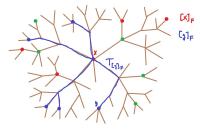
- Let $F \subseteq E$ and T be as before, and suppose F is hyperfinite.
- For each x ∈ X, let T_[x] be the subtree of T spanned by the convex hull of [x]_F:



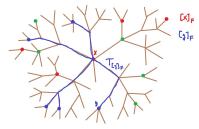
- Let $F \subseteq E$ and T be as before, and suppose F is hyperfinite.
- For each x ∈ X, let T_{[x]F} be the subtree of T spanned by the convex hull of [x]_F:



- Let $F \subseteq E$ and T be as before, and suppose F is hyperfinite.
- For each x ∈ X, let T_{[x]F} be the subtree of T spanned by the convex hull of [x]_F:



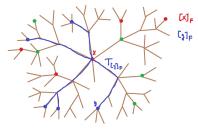
- Let $F \subseteq E$ and T be as before, and suppose F is hyperfinite.
- For each x ∈ X, let T_{[x]F} be the subtree of T spanned by the convex hull of [x]_F:



Observations (Ts.–Tucker-Drob)

Let $x \mapsto \mathcal{E}_x$ be the maximum *F*-invariant end-selection.

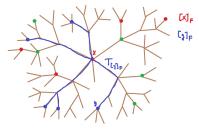
- Let $F \subseteq E$ and T be as before, and suppose F is hyperfinite.
- For each x ∈ X, let T_{[x]F} be the subtree of T spanned by the convex hull of [x]_F:



Observations (Ts.–Tucker-Drob)

Let $x \mapsto \mathcal{E}_x$ be the maximum *F*-invariant end-selection. • $\mathcal{E}_x \subseteq \partial T_{[x]_F}$.

- Let $F \subseteq E$ and T be as before, and suppose F is hyperfinite.
- For each x ∈ X, let T_{[x]F} be the subtree of T spanned by the convex hull of [x]_F:



Observations (Ts.–Tucker-Drob)

Let $x \mapsto \mathcal{E}_x$ be the maximum *F*-invariant end-selection.

- If E is pmp, then $\mathcal{E}_x = \partial T_{[x]_F}$ a.e., i.e. a.e. F-class spans exactly the ends that it maximally selects.

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

This immediately implies:

Theorem (Bowen)

Let E be a treeable pmp equivalence relation on (X, μ) and let T be a treeing of E.

- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.
- Every µ-nowhere smooth hyperfinite F ⊆ E is contained in a unique maximal hyperfinite F ⊆ E.

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

This immediately implies:

Theorem (Bowen)

Let E be a treeable pmp equivalence relation on (X, μ) and let T be a treeing of E.

- Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.
- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.
- e Every µ-nowhere smooth hyperfinite F ⊆ E is contained in a unique maximal hyperfinite F ⊆ E.

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

• Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

• Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Proof.

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

• Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.

Proof.

• Whatever ends (one or two) C_0 maximally selects, it spans them,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

• Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.

Proof.

• Whatever ends (one or two) C_0 maximally selects, it spans them,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

• hence C_1 spans them too.

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

• Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.

Proof.

• Whatever ends (one or two) C_0 maximally selects, it spans them,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- hence C_1 spans them too.
- Thus if C_0 spans two ends, so does C_1 .

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

• Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.

Proof.

- Whatever ends (one or two) C_0 maximally selects, it spans them,
- hence C_1 spans them too.
- Thus if C_0 spans two ends, so does C_1 .
- If C₀ spans one end, C₁ cannot span another end in addition to this, because then C₀ would see it too and would be able to select, contradicting C₀ maximally selecting only one end. □

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

↓

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

↓ • Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. If each F_0 -class selects two ends, then so does each F_1 -class.

If $F_0, F_1 \subseteq E$ are hyperfinite and $F := F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

↓ • Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. If each F_0 -class selects two ends, then so does each F_1 -class.

↓

• If $F_0, F_1 \subseteq E$ are hyperfinite and $F := F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Proof.

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

↓
 ↓ Let F₀ ⊆ F₁ ⊆ E be hyperfinite. If each F₀-class selects two ends, then so does each F₁-class.

↓ • If $F_0, F_1 \subseteq E$ are hyperfinite and $F := F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.

Every μ -nowhere smooth hyperfinite $F \subseteq E$ is contained in a unique maximal hyperfinite $\overline{F} \subseteq E$.

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

↓
 ↓ Let F₀ ⊆ F₁ ⊆ E be hyperfinite. If each F₀-class selects two ends, then so does each F₁-class.

- ↓ If $F_0, F_1 \subseteq E$ are hyperfinite and $F := F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.
- Solution Every μ -nowhere smooth hyperfinite $F \subseteq E$ is contained in a unique maximal hyperfinite $\overline{F} \subseteq E$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Proof.

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

- ↓
 ↓ Let F₀ ⊆ F₁ ⊆ E be hyperfinite. If each F₀-class selects two ends, then so does each F₁-class.
- ↓ If $F_0, F_1 \subseteq E$ are hyperfinite and $F := F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.
- Solution Every μ -nowhere smooth hyperfinite $F \subseteq E$ is contained in a unique maximal hyperfinite $\overline{F} \subseteq E$.

Proof.

By measure exhaustion argument, a maximal hyperfinite extension $\overline{F} \subseteq E$ of F always exists (even when E is not treeable).

Let E be a treeable equivalence relation and T a treeing of E.

Observation (Ts.-Tucker-Drob)

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

- ↓
 ↓ Let F₀ ⊆ F₁ ⊆ E be hyperfinite. If each F₀-class selects two ends, then so does each F₁-class.
- ↓ • If $F_0, F_1 \subseteq E$ are hyperfinite and $F := F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.
- Solution Every μ -nowhere smooth hyperfinite $F \subseteq E$ is contained in a unique maximal hyperfinite $\overline{F} \subseteq E$.

Proof.

By measure exhaustion argument, a maximal hyperfinite extension $\overline{F} \subseteq E$ of F always exists (even when E is not treeable).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(1) implies the uniqueness.

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

This immediately implies:

Theorem (Bowen)

Let E be a treeable pmp equivalence relation on (X, μ) and let T be a treeing of E.

- Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.
- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.
- e Every µ-nowhere smooth hyperfinite F ⊆ E is contained in a unique maximal hyperfinite F ⊆ E.

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

This immediately implies:

Theorem (Bowen)

Let E be a treeable pmp equivalence relation on (X, μ) and let T be a treeing of E.

- Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.
- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.
- every µ-nowhere smooth hyperfinite F ⊆ E is contained in a unique maximal hyperfinite F ⊆ E.

Question: Do these statements hold in the general (non-pmp) setting?

Let $F \subseteq E$ be hyperfinite. If E is pmp, then a.e. F-class spans exactly the ends that it maximally selects.

This immediately implies:

Theorem (Bowen)

Let E be a treeable pmp equivalence relation on (X, μ) and let T be a treeing of E.

- Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.
- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \vee F_1$ is still hyperfinite.
- e Every µ-nowhere smooth hyperfinite F ⊆ E is contained in a unique maximal hyperfinite F ⊆ E.

Question: Do these statements hold in the general (non-pmp) setting? Problem: The observation above fails in the non-pmp setting!

Let ∂𝔽₂ be the boundary of 𝔽₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

Let ∂𝔽₂ be the boundary of 𝔽₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.

Let ∂F₂ be the boundary of F₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

- ▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.
- Let *E* be induced by the natural action of \mathbb{F}_2 on its boundary $\partial \mathbb{F}_2$

Let ∂F₂ be the boundary of F₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

- ▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.
- Let *E* be induced by the natural action of \mathbb{F}_2 on its boundary $\partial \mathbb{F}_2$
- and let T be the standard Schreier graph of the action.

- Let ∂𝔽₂ be the boundary of 𝔽₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...
- ▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.
- Let *E* be induced by the natural action of \mathbb{F}_2 on its boundary $\partial \mathbb{F}_2$
- ▶ and let *T* be the standard Schreier graph of the action.
- ▶ *E* is also induced by the left-shift θ : $\partial \mathbb{F}_2 \rightarrow \partial \mathbb{F}_2$ given by $(x_n) \mapsto (x_{n+1})$, i.e. the graph of θ is an oriented version of *T*:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Let ∂F₂ be the boundary of F₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...
- ▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.
- Let *E* be induced by the natural action of \mathbb{F}_2 on its boundary $\partial \mathbb{F}_2$
- ▶ and let *T* be the standard Schreier graph of the action.
- ▶ *E* is also induced by the left-shift θ : $\partial \mathbb{F}_2 \rightarrow \partial \mathbb{F}_2$ given by $(x_n) \mapsto (x_{n+1})$, i.e. the graph of θ is an oriented version of *T*:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

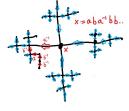
- Let ∂F₂ be the boundary of F₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...
- ▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.
- Let *E* be induced by the natural action of \mathbb{F}_2 on its boundary $\partial \mathbb{F}_2$
- ▶ and let *T* be the standard Schreier graph of the action.
- ▶ *E* is also induced by the left-shift θ : $\partial \mathbb{F}_2 \rightarrow \partial \mathbb{F}_2$ given by $(x_n) \mapsto (x_{n+1})$, i.e. the graph of θ is an oriented version of *T*:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A non-pmp counter-example to Observation

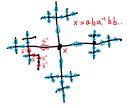
- Let ∂F₂ be the boundary of F₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...
- ▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.
- Let *E* be induced by the natural action of \mathbb{F}_2 on its boundary $\partial \mathbb{F}_2$
- ▶ and let *T* be the standard Schreier graph of the action.
- ▶ *E* is also induced by the left-shift θ : $\partial \mathbb{F}_2 \rightarrow \partial \mathbb{F}_2$ given by $(x_n) \mapsto (x_{n+1})$, i.e. the graph of θ is an oriented version of *T*:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



A non-pmp counter-example to Observation

- Let ∂F₂ be the boundary of F₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...
- ▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.
- Let *E* be induced by the natural action of \mathbb{F}_2 on its boundary $\partial \mathbb{F}_2$
- ▶ and let *T* be the standard Schreier graph of the action.
- ▶ *E* is also induced by the left-shift θ : $\partial \mathbb{F}_2 \rightarrow \partial \mathbb{F}_2$ given by $(x_n) \mapsto (x_{n+1})$, i.e. the graph of θ is an oriented version of *T*:



Thus, E is actually hyperfinite because each E-class selects one end in the direction of θ.

A non-pmp counter-example to Observation

- Let ∂F₂ be the boundary of F₂, i.e. the set of all reduced infinite words, like x := aba⁻¹bb...
- ▶ \mathbb{F}_2 acts on $\partial \mathbb{F}_2$ by concatenation: $w \cdot x := wx$, $w \in \mathbb{F}_2$ and $x \in \partial \mathbb{F}_2$.
- Let *E* be induced by the natural action of \mathbb{F}_2 on its boundary $\partial \mathbb{F}_2$
- ▶ and let *T* be the standard Schreier graph of the action.
- E is also induced by the left-shift θ : ∂F₂ → ∂F₂ given by (x_n) → (x_{n+1}), i.e. the graph of θ is an oriented version of T:



- Thus, E is actually hyperfinite because each E-class selects one end in the direction of θ.
- We can take F := E, so each F-class spans continuum-many ends, yet selects one!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A non-pmp counter-example to Observation (continued)

But how does the equivalence relation E know about this θ-directing?

But how does the equivalence relation E know about this θ -directing?

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

▶ There don't exist any \mathbb{F}_2 -invariant probability measures on $\partial \mathbb{F}_2$,

But how does the equivalence relation E know about this θ -directing?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- There don't exist any \mathbb{F}_2 -invariant probability measures on $\partial \mathbb{F}_2$,
- but there many probability measures such that the F₂-action is null-preserving.

- But how does the equivalence relation E know about this θ -directing?
- There don't exist any \mathbb{F}_2 -invariant probability measures on $\partial \mathbb{F}_2$,
- ▶ but there many probability measures such that the 𝑘₂-action is null-preserving.
- Define a probability measure µ on ∂𝔽₂ by giving equal probability to every possible letter in each coordinate:

1/4 1/3 1/3 1/3 ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- But how does the equivalence relation E know about this θ -directing?
- There don't exist any \mathbb{F}_2 -invariant probability measures on $\partial \mathbb{F}_2$,
- ▶ but there many probability measures such that the 𝑘₂-action is null-preserving.
- Define a probability measure µ on ∂𝔽₂ by giving equal probability to every possible letter in each coordinate:

1/4 1/3 1/3 1/3 ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

► The Radon–Nikodym cocycle $\frac{d\mu(y)}{d\mu(x)}$ grows in the direction of the shift: $\frac{d\mu(\theta^n(x))}{d\mu(x)} = 3^n \to \infty.$

▶ Let E be a treeable equivalence relation on (X, µ), typically non-pmp,
 ▶ and let T be a treeing of E.

- Let E be a treeable equivalence relation on (X, μ) , typically non-pmp,
- ▶ and let *T* be a treeing of *E*.
- We may assume WLOG that E is null-preserving and hence, there is a "correction of non-invariance", the so-called Radon–Nikodym cocycle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- Let E be a treeable equivalence relation on (X, μ) , typically non-pmp,
- ▶ and let *T* be a treeing of *E*.
- We may assume WLOG that E is null-preserving and hence, there is a "correction of non-invariance", the so-called Radon–Nikodym cocycle.

Theorem (Ts.-Tucker-Drob)

A complete analysis of a hyperfinite subequivalence relation $F \subseteq E$ in terms of its structure in relation to T and the Radon–Nikodym cocycle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Let E be a treeable equivalence relation on (X, μ) , typically non-pmp,
- and let T be a treeing of E.
- We may assume WLOG that E is null-preserving and hence, there is a "correction of non-invariance", the so-called Radon–Nikodym cocycle.

Theorem (Ts.-Tucker-Drob)

A complete analysis of a hyperfinite subequivalence relation $F \subseteq E$ in terms of its structure in relation to T and the Radon–Nikodym cocycle.

Corollary (Ts.-Tucker-Drob)

 Let F₀ ⊆ F₁ ⊆ E be hyperfinite. Let F₀ ⊆ F₁ ⊆ E be hyperfinite. Almost every F₀-class C₀ maximally selects exactly the same ends as the F₁-class C₁ ⊇ C₀.

- Let E be a treeable equivalence relation on (X, μ) , typically non-pmp,
- ▶ and let *T* be a treeing of *E*.
- We may assume WLOG that E is null-preserving and hence, there is a "correction of non-invariance", the so-called Radon–Nikodym cocycle.

Theorem (Ts.-Tucker-Drob)

A complete analysis of a hyperfinite subequivalence relation $F \subseteq E$ in terms of its structure in relation to T and the Radon–Nikodym cocycle.

Corollary (Ts.-Tucker-Drob)

- Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Let $F_0 \subseteq F_1 \subseteq E$ be hyperfinite. Almost every F_0 -class C_0 maximally selects exactly the same ends as the F_1 -class $C_1 \supseteq C_0$.
- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \lor F_1$ is still hyperfinite.

- Let E be a treeable equivalence relation on (X, μ) , typically non-pmp,
- ▶ and let *T* be a treeing of *E*.
- We may assume WLOG that E is null-preserving and hence, there is a "correction of non-invariance", the so-called Radon–Nikodym cocycle.

Theorem (Ts.-Tucker-Drob)

A complete analysis of a hyperfinite subequivalence relation $F \subseteq E$ in terms of its structure in relation to T and the Radon–Nikodym cocycle.

Corollary (Ts.-Tucker-Drob)

- Let F₀ ⊆ F₁ ⊆ E be hyperfinite. Let F₀ ⊆ F₁ ⊆ E be hyperfinite. Almost every F₀-class C₀ maximally selects exactly the same ends as the F₁-class C₁ ⊇ C₀.
- If $F_0, F_1 \subseteq E$ are hyperfinite and $F_0 \cap F_1$ is μ -nowhere smooth, then $F_0 \lor F_1$ is still hyperfinite.
- **2** Every μ -nowhere smooth hyperfinite $F \subseteq E$ is contained in a unique maximal hyperfinite $\overline{F} \subseteq E$.

• Given a measurable E on a probability space (X, μ) , we may write $E = E_{\Gamma}$ for some countable $\Gamma = \{\gamma_n\}$ and measurable $\Gamma \frown (X, \mu)$ (Feldman–Moore).

- Given a measurable E on a probability space (X, μ) , we may write $E = E_{\Gamma}$ for some countable $\Gamma = \{\gamma_n\}$ and measurable $\Gamma \frown (X, \mu)$ (Feldman–Moore).
- ▶ Replacing μ with $\mu' := \sum_{n} 2^{-(n+1)} \gamma_{n*} \mu$ and assume that E is quasi-pmp (i.e. null-preserving).

- Given a measurable E on a probability space (X, μ) , we may write $E = E_{\Gamma}$ for some countable $\Gamma = \{\gamma_n\}$ and measurable $\Gamma \frown (X, \mu)$ (Feldman–Moore).
- ▶ Replacing μ with $\mu' := \sum_{n} 2^{-(n+1)} \gamma_{n*} \mu$ and assume that E is quasi-pmp (i.e. null-preserving).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

E on (X, μ) is quasi-pmp if each γ ∈ [[E]] (i.e. Borel injection γ : A → X with x E γx) is null-preserving.

- Given a measurable E on a probability space (X, μ) , we may write $E = E_{\Gamma}$ for some countable $\Gamma = \{\gamma_n\}$ and measurable $\Gamma \frown (X, \mu)$ (Feldman–Moore).
- ▶ Replacing μ with $\mu' := \sum_{n} 2^{-(n+1)} \gamma_{n*} \mu$ and assume that E is quasi-pmp (i.e. null-preserving).
- E on (X, μ) is quasi-pmp if each γ ∈ [[E]] (i.e. Borel injection γ : A → X with x E γx) is null-preserving.
- ▶ To a quasi-pmp *E*, we can associate the so-called Radon–Nikodym cocycle: a unique Borel $\rho : E \to \mathbb{R}^+$ such that

- Given a measurable E on a probability space (X, μ) , we may write $E = E_{\Gamma}$ for some countable $\Gamma = \{\gamma_n\}$ and measurable $\Gamma \frown (X, \mu)$ (Feldman–Moore).
- ▶ Replacing μ with $\mu' := \sum_{n} 2^{-(n+1)} \gamma_{n*} \mu$ and assume that E is quasi-pmp (i.e. null-preserving).
- E on (X, μ) is quasi-pmp if each γ ∈ [[E]] (i.e. Borel injection γ : A → X with x E γx) is null-preserving.
- ▶ To a quasi-pmp *E*, we can associate the so-called Radon–Nikodym cocycle: a unique Borel $\rho : E \to \mathbb{R}^+$ such that
 - **(**) it satisfies the cocycle identity: for *E*-equivalent $x, y, z \in X$,

$$\rho(z,y) \cdot \rho(y,x) = \rho(z,x)$$

- Given a measurable E on a probability space (X, μ) , we may write $E = E_{\Gamma}$ for some countable $\Gamma = \{\gamma_n\}$ and measurable $\Gamma \frown (X, \mu)$ (Feldman–Moore).
- ▶ Replacing μ with $\mu' := \sum_{n} 2^{-(n+1)} \gamma_{n*} \mu$ and assume that E is quasi-pmp (i.e. null-preserving).
- E on (X, μ) is quasi-pmp if each γ ∈ [[E]] (i.e. Borel injection γ : A → X with x E γx) is null-preserving.
- ▶ To a quasi-pmp *E*, we can associate the so-called Radon–Nikodym cocycle: a unique Borel $\rho : E \to \mathbb{R}^+$ such that
 - **(**) it satisfies the cocycle identity: for *E*-equivalent $x, y, z \in X$,

$$\begin{array}{rcl} \rho(z,y) & \cdot & \rho(y,x) & = & \rho(z,x) \\ & & & \\ & & \\ \frac{d\mu(z)}{d\mu(y)} & \cdot & \frac{d\mu(y)}{d\mu(x)} & = & \frac{d\mu(z)}{d\mu(x)}. \end{array}$$

- Given a measurable E on a probability space (X, μ) , we may write $E = E_{\Gamma}$ for some countable $\Gamma = \{\gamma_n\}$ and measurable $\Gamma \frown (X, \mu)$ (Feldman–Moore).
- ▶ Replacing μ with $\mu' := \sum_{n} 2^{-(n+1)} \gamma_{n*} \mu$ and assume that E is quasi-pmp (i.e. null-preserving).
- E on (X, μ) is quasi-pmp if each γ ∈ [[E]] (i.e. Borel injection γ : A → X with x E γx) is null-preserving.
- ▶ To a quasi-pmp *E*, we can associate the so-called Radon–Nikodym cocycle: a unique Borel $\rho : E \to \mathbb{R}^+$ such that
 - **(**) it satisfies the cocycle identity: for *E*-equivalent $x, y, z \in X$,

$$\begin{array}{rcl} \rho(z,y) & \cdot & \rho(y,x) & = & \rho(z,x) \\ & & & \\ & & \\ \frac{d\mu(z)}{d\mu(y)} & \cdot & \frac{d\mu(y)}{d\mu(x)} & = & \frac{d\mu(z)}{d\mu(x)}. \end{array}$$

(2) it is μ -invariant: $\mu(\gamma A) = \int_A \frac{d\mu(\gamma x)}{d\mu(x)} d\mu(x)$.

Let *E* be a quasi-pmp equivalence relation on (X, μ) with Radon–Nikodym cocycle ρ (write $\frac{d\mu(y)}{d\mu(x)} := \rho(y, x)$),

- Let *E* be a quasi-pmp equivalence relation on (X, μ) with Radon–Nikodym cocycle ρ (write $\frac{d\mu(y)}{d\mu(x)} := \rho(y, x)$),
- ► T a treeing of E,

- Let *E* be a quasi-pmp equivalence relation on (X, μ) with Radon–Nikodym cocycle ρ (write $\frac{d\mu(y)}{d\mu(x)} := \rho(y, x)$),
- T a treeing of E,
- $F \subseteq E$ a hyperfinite subequivalence relation,

- Let *E* be a quasi-pmp equivalence relation on (X, μ) with Radon–Nikodym cocycle ρ (write $\frac{d\mu(y)}{d\mu(x)} := \rho(y, x)$),
- T a treeing of E,
- $F \subseteq E$ a hyperfinite subequivalence relation,
- $x \mapsto \mathcal{E}_x$ the maximum *F*-invariant measurable end-selection in *T*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- ► Let *E* be a quasi-pmp equivalence relation on (X, μ) with Radon–Nikodym cocycle ρ (write $\frac{d\mu(y)}{d\mu(x)} := \rho(y, x)$),
- T a treeing of E,
- $F \subseteq E$ a hyperfinite subequivalence relation,
- $x \mapsto \mathcal{E}_x$ the maximum *F*-invariant measurable end-selection in *T*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Suppose *F* is *T*-loxodromic, i.e. $\mathcal{E}_x = \{\xi_x^-, \xi_x^+\}$ a.s.

- Let *E* be a quasi-pmp equivalence relation on (X, μ) with Radon–Nikodym cocycle ρ (write $\frac{d\mu(y)}{d\mu(x)} := \rho(y, x)$),
- T a treeing of E,
- $F \subseteq E$ a hyperfinite subequivalence relation,
- $x \mapsto \mathcal{E}_x$ the maximum *F*-invariant measurable end-selection in *T*.

Suppose *F* is *T*-loxodromic, i.e. $\mathcal{E}_x = \{\xi_x^-, \xi_x^+\}$ a.s.

Then, essentially:

• Each *F*-class $[x]_F$ spans exactly two ends of *T*, namely ξ_x^- and ξ_x^+ ,

- ► Let *E* be a quasi-pmp equivalence relation on (X, μ) with Radon–Nikodym cocycle ρ (write $\frac{d\mu(y)}{d\mu(x)} := \rho(y, x)$),
- T a treeing of E,
- $F \subseteq E$ a hyperfinite subequivalence relation,

• $x \mapsto \mathcal{E}_x$ the maximum *F*-invariant measurable end-selection in *T*.

Suppose F is T-loxodromic, i.e. $\mathcal{E}_x = \{\xi_x^-, \xi_x^+\}$ a.s.

Then, essentially:

• Each *F*-class $[x]_F$ spans exactly two ends of *T*, namely ξ_x^- and ξ_x^+ ,

and

$$\begin{split} & \liminf_{y \to \xi_x^-} \frac{d\mu(y)}{d\mu(x)} = \liminf_{y \to \xi_x^+} \frac{d\mu(y)}{d\mu(x)} < \infty \text{ (typically = 0)} \\ & \limsup_{y \to \xi_x^-} \frac{d\mu(y)}{d\mu(x)} = \limsup_{y \to \xi_x^+} \frac{d\mu(y)}{d\mu(x)} > 0 \text{ (typically = \infty)}. \end{split}$$

- Let *E* be a quasi-pmp equivalence relation on (X, μ) with Radon–Nikodym cocycle ρ (write $\frac{d\mu(y)}{d\mu(x)} := \rho(y, x)$),
- T a treeing of E,
- $F \subseteq E$ a hyperfinite subequivalence relation,

▶ $x \mapsto \mathcal{E}_x$ the maximum *F*-invariant measurable end-selection in *T*.

Suppose *F* is *T*-loxodromic, i.e. $\mathcal{E}_x = \{\xi_x^-, \xi_x^+\}$ a.s.

Then, essentially:

• Each *F*-class $[x]_F$ spans exactly two ends of *T*, namely ξ_x^- and ξ_x^+ ,

and

$$\begin{split} & \liminf_{y \to \xi_x^-} \frac{d\mu(y)}{d\mu(x)} = \liminf_{y \to \xi_x^+} \frac{d\mu(y)}{d\mu(x)} < \infty \text{ (typically = 0)} \\ & \limsup_{y \to \xi_x^-} \frac{d\mu(y)}{d\mu(x)} = \limsup_{y \to \xi_x^+} \frac{d\mu(y)}{d\mu(x)} > 0 \text{ (typically = \infty)}. \end{split}$$

③ In fact, if $\liminf > 0$ or $\limsup < \infty$, then ρ is a coboundary.

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

▲□▶ ▲圖▶ ▲匡▶ ▲匡≯ 三臣 - のへで

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

Then, there is an acyclic Borel function $\theta: X \to X$ inducing F such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

Then, there is an acyclic Borel function $\theta : X \to X$ inducing F such that $\lim_{n\to\infty} \theta^n(x) = \xi_x^+$ a.s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

Then, there is an acyclic Borel function $\theta: X \to X$ inducing F such that

•
$$\lim_{n \to \infty} \theta^n(x) = \xi_x^+$$
 a.s

• $T_{\theta}|_{[x]_F}$ and $T_{[x]_F}$ have the same ends (\exists a canonical homeomorphism).

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

Then, there is an acyclic Borel function $\theta : X \to X$ inducing F such that $\lim_{n\to\infty} \theta^n(x) = \xi_x^+$ a.s.

• $T_{\theta}|_{[x]_F}$ and $T_{[x]_F}$ have the same ends (\exists a canonical homeomorphism). Furthermore, X is partitioned into F-invariant sets $X_1 \sqcup X_{\infty}$, where

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

Then, there is an acyclic Borel function $\theta : X \to X$ inducing F such that $\lim_{n\to\infty} \theta^n(x) = \xi_x^+$ a.s.

• $T_{\theta}|_{[x]_F}$ and $T_{[x]_F}$ have the same ends (\exists a canonical homeomorphism). Furthermore, X is partitioned into F-invariant sets $X_1 \sqcup X_{\infty}$, where

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• $T_{\theta}|_{X_1}$ is essentially 1-ended.

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

Then, there is an acyclic Borel function $\theta : X \to X$ inducing F such that $\lim_{n\to\infty} \theta^n(x) = \xi_x^+$ a.s.

• $T_{\theta}|_{[X]_F}$ and $T_{[X]_F}$ have the same ends (\exists a canonical homeomorphism). Furthermore, X is partitioned into F-invariant sets $X_1 \sqcup X_{\infty}$, where

- $T_{\theta}|_{X_1}$ is essentially 1-ended.
- 2 $T_{\theta}|_{X_{\infty}}$ is μ -nowhere essentially 1-ended, and

$$\limsup_{y\to\xi_x^+}\frac{d\mu(y)}{d\mu(x)}=\infty,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

Then, there is an acyclic Borel function $\theta : X \to X$ inducing F such that $\lim_{n\to\infty} \theta^n(x) = \xi_x^+$ a.s.

• $T_{\theta}|_{[x]_F}$ and $T_{[x]_F}$ have the same ends (\exists a canonical homeomorphism). Furthermore, X is partitioned into F-invariant sets $X_1 \sqcup X_{\infty}$, where

- $T_{\theta}|_{X_1}$ is essentially 1-ended.
- 2 $T_{\theta}|_{X_{\infty}}$ is μ -nowhere essentially 1-ended, and

$$\limsup_{y\to\xi_x^+}\frac{d\mu(y)}{d\mu(x)}=\infty,$$

whereas, for any other end $\xi^- \in \partial T_{\theta}|_{[x]_F}$,

$$\lim_{y\to\xi^-}\frac{d\mu(y)}{d\mu(x)}=0.$$

Suppose *F* is *T*-parabolic, i.e. $\mathcal{E}_x = \{\xi_x^+\}$ a.s.

Then, there is an acyclic Borel function $\theta: X \to X$ inducing F such that $\lim_{n\to\infty} \theta^n(x) = \xi_x^+$ a.s.

• $T_{\theta}|_{[x]_F}$ and $T_{[x]_F}$ have the same ends (\exists a canonical homeomorphism). Furthermore, X is partitioned into F-invariant sets $X_1 \sqcup X_{\infty}$, where

- $T_{\theta}|_{X_1}$ is essentially 1-ended.
- 2 $T_{\theta}|_{X_{\infty}}$ is μ -nowhere essentially 1-ended, and

$$\limsup_{y\to\xi_x^+}\frac{d\mu(y)}{d\mu(x)}=\infty,$$

whereas, for any other end $\xi^- \in \partial T_{\theta}|_{[x]_F}$,

$$\lim_{y\to\xi^-}\frac{d\mu(y)}{d\mu(x)}=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

That's why ξ_x^+ was selected!

Lemma (Ts.–Tucker-Drob)

Let Σ be a set of permutations of a set V.

Lemma (Ts.–Tucker-Drob)

Let Σ be a set of permutations of a set V.

• Let T be a tree on V and $\xi^+ \in \partial T$ such that for each $v \in V$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Lemma (Ts.–Tucker-Drob)

Let Σ be a set of permutations of a set V.

• Let T be a tree on V and $\xi^+ \in \partial T$ such that for each $v \in V$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•
$$v \in (\sigma^{-1}(v), \xi^+)_T$$
 for all $\sigma \in \Sigma$;

Lemma (Ts.–Tucker-Drob)

Let Σ be a set of permutations of a set V.

• Let T be a tree on V and $\xi^+ \in \partial T$ such that for each $v \in V$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

•
$$v \in (\sigma^{-1}(v), \xi^+)_T$$
 for all $\sigma \in \Sigma$;

•
$$v \in (\sigma^{-1}(v), \tau^{-1}(v))$$
 for all distinct $\sigma, \tau \in \Sigma$.

Lemma (Ts.–Tucker-Drob)

Let Σ be a set of permutations of a set V.

• Let T be a tree on V and $\xi^+ \in \partial T$ such that for each $v \in V$,

•
$$v \in (\sigma^{-1}(v), \xi^+)_T$$
 for all $\sigma \in \Sigma$;

•
$$v \in (\sigma^{-1}(v), \tau^{-1}(v))$$
 for all distinct $\sigma, \tau \in \Sigma$.

Then Σ generates a free group, whose action on V is free.

Thanks!

◆□▶ ◆舂▶ ◆差▶ ◆差▶ 差 のへで