Type Omission and Subcompact cardinals

Yair Hayut

Kurt Gödel Research Center

March 5, 2020

Kurt Gödel Research Center

A D > <
A P >
A

Yair Hayut

Strongly compact cardinals have many equivalent definitions:

Kurt Gödel Research Center

Yair Hayut

Definition

Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

Yair Hayut

Kurt Gödel Research Center

Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

1 The κ -compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.

(ロ・・部・・ボッ・・ボー シック

Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

- **1** The κ -compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
- **2** Every *κ*-complete filter can be extended to *κ*-complete ultrafilter.

Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

- **1** The κ -compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
- **2** Every *κ*-complete filter can be extended to *κ*-complete ultrafilter.
- **3** For every $\lambda \geq \kappa$, there is a fine κ -complete ultrafilter on $P_{\kappa}\lambda$.

Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

- **1** The κ -compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
- **2** Every *κ*-complete filter can be extended to *κ*-complete ultrafilter.
- **3** For every $\lambda \geq \kappa$, there is a fine κ -complete ultrafilter on $P_{\kappa}\lambda$.
- 4 For every λ , there is an elementary embedding $j: V \to M$, M is transitive, crit $j = \kappa$ and $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.

Kurt Gödel Research Center

< 口 > < 同 >

Strongly compact cardinals have many equivalent definitions:

Theorem

Let κ be an uncountable cardinal. The following are equivalent:

- **1** The κ -compactness theorem for $\mathcal{L}_{\kappa,\kappa}$.
- **2** Every *κ*-complete filter can be extended to *κ*-complete ultrafilter.
- **3** For every $\lambda \geq \kappa$, there is a fine κ -complete ultrafilter on $P_{\kappa}\lambda$.
- 4 For every λ , there is an elementary embedding $j: V \to M$, M is transitive, crit $j = \kappa$ and $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.
- **5** κ is inaccessible for every λ , and every $P_{\kappa}\lambda$ -tree has a branch.

< 口 > < 同 >

Local strong compactness

By localizing, we get:

Kurt Gödel Research Center

Yair Hayut

Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

Type Omission and Subcompact cardinals

Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1 Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

Type Omission and Subcompact cardinals

Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

- **1** Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ .
- **2** κ is inaccessible and every $P_{\kappa}\lambda$ -tree has a branch.

Yair Hayut

Type Omission and Subcompact cardinals

Image: Image:

Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

- **1** Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ .
- **2** κ is inaccessible and every $P_{\kappa}\lambda$ -tree has a branch.
- **3** If *M* is a model of set theory of size λ , ${}^{<\kappa}M \subseteq M$, then there is a transitive model *N* and an elementary embedding $j: M \to N$, with crit $j = \kappa$, $j[M] \subseteq s \in N$, $|s|^N < j(\kappa)$.

Image: A math a math

Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

- **1** Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ .
- **2** κ is inaccessible and every $P_{\kappa}\lambda$ -tree has a branch.
- **3** If *M* is a model of set theory of size λ , ${}^{<\kappa}M \subseteq M$, then there is a transitive model *N* and an elementary embedding $j: M \to N$, with crit $j = \kappa$, $j[M] \subseteq s \in N$, $|s|^N < j(\kappa)$.

If $\lambda = 2^{\mu}$ we can add:

Image: A math a math

Kurt Gödel Research Center

Local strong compactness

By localizing, we get:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

- **1** Compactness of $\mathcal{L}_{\kappa,\kappa}$ for languages of size λ .
- **2** κ is inaccessible and every $P_{\kappa}\lambda$ -tree has a branch.
- **3** If *M* is a model of set theory of size λ , ${}^{<\kappa}M \subseteq M$, then there is a transitive model *N* and an elementary embedding $j: M \to N$, with crit $j = \kappa$, $j[M] \subseteq s \in N$, $|s|^N < j(\kappa)$.

If $\lambda = 2^{\mu}$ we can add:

Every κ-complete filter on μ can be extended to a κ-complete ultrafilter.

Yair Hayut

Trees 00000

Other version of local strong compactness

On the other hand:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 - つへの

Kurt Gödel Research Center

Yair Hayut

Trees 00000

Other version of local strong compactness

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

Yair Hayut

Kurt Gödel Research Center

Image: A math a math

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1 Every κ -complete filter, which is generated by λ sets can be extended to a κ -complete ultrafilter.

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

- **1** Every κ -complete filter, which is generated by λ sets can be extended to a κ -complete ultrafilter.
- **2** There is a κ -complete fine ultrafilter on $P_{\kappa}\lambda$.

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

- **1** Every κ -complete filter, which is generated by λ sets can be extended to a κ -complete ultrafilter.
- **2** There is a κ -complete fine ultrafilter on $P_{\kappa}\lambda$.
- **3** There is an elementary embedding $j: V \to M$ with crit $j = \kappa$, $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.

Image: A math a math

On the other hand:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

- **1** Every κ -complete filter, which is generated by λ sets can be extended to a κ -complete ultrafilter.
- **2** There is a κ -complete fine ultrafilter on $P_{\kappa}\lambda$.
- **3** There is an elementary embedding $j: V \to M$ with crit $j = \kappa$, $j[\lambda] \subseteq s \in M$, $|s| < j(\kappa)$.

Image: A math a math

What does λ -compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

Kurt Gödel Research Center

Yair Hayut

Kurt Gödel Research Center

What does λ -compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

1 There is a κ -complete fine ultrafilter on $P_{\kappa}2^{\lambda}$.

Yair Hayut

What does λ -compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

1 There is a κ -complete fine ultrafilter on $P_{\kappa}2^{\lambda}$.

2 Every κ -complete filter on λ can be extended to a κ -complete ultrafilter.

Kurt Gödel Research Center

What does λ -compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

- **1** There is a κ -complete fine ultrafilter on $P_{\kappa}2^{\lambda}$.
- **2** Every κ -complete filter on λ can be extended to a κ -complete ultrafilter.
- **3** There is a κ -complete fine ultrafilter on $P_{\kappa}\lambda$.

Yair Hayut

Kurt Gödel Research Center

What does λ -compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

- **1** There is a κ -complete fine ultrafilter on $P_{\kappa}2^{\lambda}$.
- **2** Every κ -complete filter on λ can be extended to a κ -complete ultrafilter.
- **3** There is a κ -complete fine ultrafilter on $P_{\kappa}\lambda$.
- **4** $\mathcal{L}_{\kappa,\kappa}$ -compactness for languages of size λ .

Yair Hayut

What does λ -compactness mean?

Those two versions are not equivalent:

Theorem

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. Each of the following statements is strictly stronger than the next:

- **1** There is a κ -complete fine ultrafilter on $P_{\kappa}2^{\lambda}$.
- **2** Every κ -complete filter on λ can be extended to a κ -complete ultrafilter.
- **3** There is a κ -complete fine ultrafilter on $P_{\kappa}\lambda$.
- **4** $\mathcal{L}_{\kappa,\kappa}$ -compactness for languages of size λ .

For example, take
$$\kappa = \lambda$$
.

Back to normality

Supercompact cardinals are the normal version of the strongly compact cardinals.

Yair Hayut

Type Omission and Subcompact cardinals

< 口 > < 同 >

Back to normality

Supercompact cardinals are the normal version of the strongly compact cardinals. They are obtained by adding a normality hypothesis to the κ -complete fine ultrafilter characterization.

Yair Hayut

Kurt Gödel Research Center

Back to normality

Supercompact cardinals are the normal version of the strongly compact cardinals. They are obtained by adding a normality hypothesis to the κ -complete fine ultrafilter characterization. In terms of elementary embeddings, κ is supercompact iff for every $\lambda \geq \kappa$, there is $j: V \to M$ such that $j[\lambda] \in M$, $\lambda < j(\kappa)$

Type Omission and Subcompact cardinals

Back to normality

Supercompact cardinals are the normal version of the strongly compact cardinals. They are obtained by adding a normality hypothesis to the κ -complete fine ultrafilter characterization. In terms of elementary embeddings, κ is supercompact iff for every $\lambda \geq \kappa$, there is $j: V \to M$ such that $j[\lambda] \in M$, $\lambda < j(\kappa)$ (or equivalently, there is $j: V \to M$, crit $j = \kappa$, $j(\kappa) > \lambda$, ${}^{\lambda}M \subseteq M$).

Type Omission and Subcompact cardinals

Kurt Gödel Research Center

Back to normality

Supercompact cardinals are the normal version of the strongly compact cardinals. They are obtained by adding a normality hypothesis to the κ -complete fine ultrafilter characterization. In terms of elementary embeddings, κ is supercompact iff for every $\lambda \geq \kappa$, there is $j: V \to M$ such that $j[\lambda] \in M$, $\lambda < j(\kappa)$ (or equivalently, there is $j: V \to M$, crit $j = \kappa$, $j(\kappa) > \lambda$, ${}^{\lambda}M \subseteq M$).

We want to have a *normal* analogue to each of the other characterizations of strong compactness.

Type Omission

One of the classical theorems in first order logic is the type omission theorem:

Yair Hayut

Type Omission

One of the classical theorems in first order logic is the type omission theorem:

Theorem (Henkin-Orey)

Let T be a consistent theory and let p(x) be a complete type (over a countable language). If there is no φ such that $T \vdash \exists x \varphi(x)$ and for all $\psi(x) \in p(x)$, $T \vdash \forall x(\varphi(x) \rightarrow \psi(x))$ then there is a model M of T that omits p.

Type Omission and Subcompact cardinals

Yair Hayut

Kurt Gödel Research Center

Type Omission

One of the classical theorems in first order logic is the type omission theorem:

Theorem (Henkin-Orey)

Let T be a consistent theory and let p(x) be a complete type (over a countable language). If there is no φ such that $T \vdash \exists x \varphi(x)$ and for all $\psi(x) \in p(x)$, $T \vdash \forall x(\varphi(x) \rightarrow \psi(x))$ then there is a model M of T that omits p.

What is the $\mathcal{L}_{\kappa,\kappa}$ -analogue?

Compactness of type omission

Let T be an $\mathcal{L}_{\kappa,\kappa}$ -theory and let p(x) be an $\mathcal{L}_{\kappa,\kappa}$ -type with a single variable x. We say that T can omit p if there is a model of T that omits p.

Kurt Gödel Research Center

< 口 > < 同 >

Kurt Gödel Research Center

Compactness of type omission

Let T be an $\mathcal{L}_{\kappa,\kappa}$ -theory and let p(x) be an $\mathcal{L}_{\kappa,\kappa}$ -type with a single variable x. We say that T can omit p if there is a model of T that omits p.

Theorem (Benda, 1976)

 κ is supercompact if and only if for every $\mathcal{L}_{\kappa,\kappa}$ -theory T and $\mathcal{L}_{\kappa,\kappa}$ -type such that for club many $T' \cup p' \in P_{\kappa}(T \cup p)$, T' can omit p', then T can omit p.

We call this property κ -compactness for type omission.

How to localize it?

Benda's argument provides directly a normal measure on $P_{\kappa}\lambda$.

<ロト < 回 ト < 臣 ト < 臣 ト 三 三 の Q C</p>

Kurt Gödel Research Center

Yair Hayut

How to localize it?

Benda's argument provides directly a normal measure on $P_{\kappa}\lambda$. Nevertheless it seems a bit wasteful:

Kurt Gödel Research Center

Yair Hayut

How to localize it?

Benda's argument provides directly a normal measure on $P_{\kappa}\lambda$. Nevertheless it seems a bit wasteful:

Theorem (H. and Magidor)

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

<□▶ < @ ▶ < 클 ▶ < 클 ▶ 클 ∽ Q Q ↔ Kurt Gödel Research Center

Yair Hayut

How to localize it?

Benda's argument provides directly a normal measure on $P_{\kappa}\lambda$. Nevertheless it seems a bit wasteful:

Theorem (H. and Magidor)

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

1 κ -compactness for type omissions over $\mathcal{L}_{\kappa,\kappa}$ with a language of size λ .

How to localize it?

Benda's argument provides directly a normal measure on $P_{\kappa}\lambda$. Nevertheless it seems a bit wasteful:

Theorem (H. and Magidor)

Let $\kappa \leq \lambda = \lambda^{<\kappa}$ be regular cardinals. The following are equivalent:

- **1** κ -compactness for type omissions over $\mathcal{L}_{\kappa,\kappa}$ with a language of size λ .
- 2 For every transitive model M of size λ , ${}^{<\kappa}M \subseteq M$, there is an elementary embedding $j: M \to N$, N transitive, crit $j = \kappa$, $j[M] \in N$.

Image: A math a math

Supercompactness by omitting first order types and transitivity

If we further assume that $\lambda^{<\lambda} = \lambda$, then we get an equivalence to $\lambda - \Pi_1^1$ -subcompactness.

Kurt Gödel Research Center

Type Omission and Subcompact cardinals

Yair Havut

Supercompactness by omitting first order types and transitivity

If we further assume that $\lambda^{<\lambda} = \lambda$, then we get an equivalence to $\lambda - \Pi_1^1$ -subcompactness.

By analysing the proof, we get that we can actually assume that T is first order, containing a binary relation E, p is first order and we just add a single $\mathcal{L}_{\omega_1,\omega_1}$ sentence, saying "There are no infinite E-decreasing sequences".

Kurt Gödel Research Center

Yair Havut

Supercompactness by omitting first order types and transitivity

If we further assume that $\lambda^{<\lambda} = \lambda$, then we get an equivalence to $\lambda - \Pi_1^1$ -subcompactness.

By analysing the proof, we get that we can actually assume that T is first order, containing a binary relation E, p is first order and we just add a single $\mathcal{L}_{\omega_1,\omega_1}$ sentence, saying "There are no infinite E-decreasing sequences". Equivalently, supercompactness is equivalent to κ -compactness of type omissions over first order logic with well-founded models.

Supercompactness by omitting first order types and transitivity

If we further assume that $\lambda^{<\lambda} = \lambda$, then we get an equivalence to $\lambda - \Pi_1^1$ -subcompactness.

By analysing the proof, we get that we can actually assume that T is first order, containing a binary relation E, p is first order and we just add a single $\mathcal{L}_{\omega_1,\omega_1}$ sentence, saying "There are no infinite E-decreasing sequences". Equivalently, supercompactness is equivalent to κ -compactness of type omissions over first order logic with well-founded models.

In particular, the supercomapct analogue of ω_1 -compactness is simply supercompactness.

Image: A math a math

The strong tree property

At the beginning, I cited Jech's characterization of strong compactness using $P_\kappa \lambda$ -trees.

Kurt Gödel Research Center

< 口 > < 同 >

Type Omission and Subcompact cardinals

Yair Hayut

The strong tree property

At the beginning, I cited Jech's characterization of strong compactness using $P_\kappa\lambda$ -trees.

Definition

Let κ be a regular cardinal, $\lambda \geq \kappa$. A $P_{\kappa}\lambda$ -tree \mathcal{T} is a function, with domain $P_{\kappa}\lambda$ and $\mathcal{T}(x) \subseteq \mathcal{P}(x)$, $|\mathcal{T}(x)| < \kappa$. Moreover, for every x, $|\mathcal{T}(x)| \neq \emptyset$ and if $x \subseteq y$ and $z \in \mathcal{T}(y)$ then $z \cap x \in \mathcal{T}(x)$. A cofinal branch in \mathcal{T} is a set $b \subseteq \lambda$, such that $b \cap x \in \mathcal{T}(x)$ for all x.

<<p>< □ ト < 同 ト < 三 ト</p>

Trees 00000

Ineffable Tree Property

Shortly after Jech published his characterization of strong compactness, Magidor defined the *ineffable tree property* and proved that it characterizes supercompactness.

Kurt Gödel Research Center

Type Omission and Subcompact cardinals

Yair Havut

Trees 00000

Ineffable Tree Property

Shortly after Jech published his characterization of strong compactness, Magidor defined the *ineffable tree property* and proved that it characterizes supercompactness.

But this is not the right *normalized* version of the strong tree property, since when taking $\lambda = \kappa$, we get weakly compact on one hand and ineffable cardinal in the other.

Trees 00●00

The normalized strong tree property

Let \mathcal{T} be a $P_{\kappa}\lambda$ tree. We say that L is a *ladder system* on \mathcal{T} if $ext{ dom } L \subseteq P_{\kappa}\lambda$ and contains a club,

Kurt Gödel Research Center

Yair Hayut

The normalized strong tree property

Let $\mathcal T$ be a $P_\kappa\lambda$ tree. We say that L is a *ladder system* on $\mathcal T$ if

- dom $L \subseteq P_{\kappa}\lambda$ and contains a club,
- $L(x) \subseteq \mathcal{T}(x)$ non-empty, and

Kurt Gödel Research Center

< 口 > < 同 >

Yair Hayut

The normalized strong tree property

Let \mathcal{T} be a $P_{\kappa}\lambda$ tree. We say that L is a *ladder system* on \mathcal{T} if

- dom $L \subseteq P_{\kappa}\lambda$ and contains a club,
- $L(x) \subseteq \mathcal{T}(x)$ non-empty, and
- for every y ∈ L(x) such that cf(|x ∩ κ|) > ω there is a club E_{x,y} ⊆ P_{|x∩κ|}x, such that for all z ∈ E_{x,y}, z belongs to the domain of L and y ∩ z ∈ L(z).

Type Omission and Subcompact cardinals

Yair Havut

The normalized strong tree property

Let \mathcal{T} be a $P_{\kappa}\lambda$ tree. We say that L is a *ladder system* on \mathcal{T} if

- dom $L \subseteq P_{\kappa}\lambda$ and contains a club,
- $L(x) \subseteq \mathcal{T}(x)$ non-empty, and
- for every $y \in L(x)$ such that $cf(|x \cap \kappa|) > \omega$ there is a club $E_{x,y} \subseteq P_{|x \cap \kappa|}x$, such that for all $z \in E_{x,y}$, z belongs to the domain of L and $y \cap z \in L(z)$.

Definition

Let $\kappa \leq \lambda$ be regular cardinals. We say that κ has the $P_{\kappa}\lambda$ -tree property with ladder systems catching if every $P_{\kappa}\lambda$ -tree \mathcal{T} and a ladder system L, there is a cofinal branch b such that $\{x \in P_{\kappa}\lambda \mid b \cap x \in L(x)\}$ is cofinal.

Trees 000●0

Π_1^1 -subcompactness for tree property

Theorem (H. and Magidor)

Let $\kappa \leq \lambda = \lambda^{<\lambda}$ be regular cardinals. The following are equivalent:

- κ is λ - Π_1^1 -subcompact.
- κ has the $P_{\kappa}\lambda$ -tree property with ladder systems catching.

Kurt Gödel Research Center

< 口 > < 同 >

Yair Hayut

The Subcompactness Hierarchy

We starting to fill out the picture, but still a lot is missing:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ─ のへの

Kurt Gödel Research Center

Yair Hayut Type Omission and Subcompact cardinals

The Subcompactness Hierarchy

We starting to fill out the picture, but still a lot is missing:

Strong compactness	Supercompactness
Fine measure on $P_{\kappa}\lambda$	Normal measure on $P_\kappa\lambda$
	Ineffable tree property for ${\it P_\kappa\lambda}$
$\mathcal{L}_{\kappa,\kappa}$ -compactness for size λ	$\Pi_1^1 extsf{-}\lambda extsf{-}subcompactness$
	λ -subcomapctness

< 口 > < 同 >

Yair Hayut