On Continuous Tree-Like Scales and Freeness properties of Internally Approachable Structures

Omer Ben-Neria

Research Seminar, The Kurt Gödel Research Center

November 5, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We will present here results from a

Joint work with Dominik Adolf

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Part I Free Sets and Tree-Like Scales

Part II Some Ideas and Insights to the Proofs

Part III The Approachable Bounded Subset Property and Open Problems

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Part I Free Sets and Tree-Like Scales

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conventions I

A **Structure** on H_{θ} will mean a model $\mathfrak{A} = \langle H_{\theta}, \in, f_n \rangle_{n < \omega}$ with countably finitary functions f_n .

We will assume that the functions f_n contain Skolem functions and a well-ordering of \mathfrak{A}

A substructure means an elementary substructure $N \prec \mathfrak{A}$

The characteristic function χ_N , of a substructure N is defined by $\chi_N(\tau) = \sup(N \cap \tau)$ for a cardinal $\tau \in H_\theta$

Free Sets

Definition

A set x is **free** with respect to a structure $\mathfrak{A} = \langle H_{\theta}, \in, f_n \rangle_{n < \omega}$ if for every $n < \omega$ and $\delta \in x$,

 $\delta \not\in f_n''[x \setminus \{\delta\}]^{<\omega}$

We say x is free over $N \prec \mathfrak{A}$ if $\delta \notin f_n''[N \cup (x \setminus \{\delta\})]^{<\omega}$,

Equivalently, if for every function $f \in N$ of some arity $k < \omega$, and $\delta \in x$, $\delta \notin f''[x \setminus {\delta}]^k$

Shelah's celebrated bound in cardinal arithmetic asserts that if \aleph_ω is a strong limit cardinal then

$$2^{\aleph_{\omega}} < \aleph_{\omega_4}, \aleph_{(2^{\aleph_0})^+}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

It is open whether $2^{\aleph_\omega} \ge \aleph_{\omega_1}$ is consistent

Cardinal Arithmetic and Free Sets

Theorem (Shelah)

If \aleph_{ω} is strong limit and $2^{\aleph_{\omega}} \ge \aleph_{\omega_1}$ then for every structure \mathfrak{A} and a substructure N of size $|N| < \aleph_{\omega}$ there is a cofinal set $x \subseteq \aleph_{\omega}$ which is free over N

More generally,

Theorem (Shelah)

If $\langle \tau_n \rangle_n$ is an interval of regular cardinals and $|PCF(\langle \tau_n \rangle_n)| \ge \aleph_1$, then for every structure \mathfrak{A} and a substructure N of size $|N| < \lambda = \sup_n \tau_n$, there is a cofinal set $x \subseteq \lambda$ which is free over N

Internally Approachable Structures

Let \mathfrak{A} be a structure and $N \prec \mathfrak{A}$. We say that N is **Internally Approachable** if $N = \bigcup_{i < \mu} N_i$ is a union of a \subseteq -increasing chain of substructures $\langle N_i | i < \mu \rangle$, $\operatorname{cof}(\mu) > \aleph_0$ so that $N_i \in N$ for all $i < \mu$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Approachable Free Subset Property

Let $\langle \tau_n\rangle_n$ be an increasing sequence of regular cardinals, and $\lambda=\sup_n\tau_n.$

Definition (Pereira)

The **Approachable Free Subset Property (AFSP)** with respect to $\langle \tau_n \rangle_n$ asserts that for every internally approachable $N \in (H_\theta, \langle \tau_n \rangle_n)$ there is an infinite subset $x \subseteq \{\chi_N(\tau_n) \mid n < \omega\}$ is free over N

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Shelah) If $|PCF(\langle \tau_n \rangle_n)| > \aleph_0$ then AFSP holds with respect to $\langle \tau_n \rangle_n$.

Improving the Bound for $2^{\aleph_{\omega}}$?

Conclusion:

If \aleph_{ω} is strong limit cardinal and $2^{\aleph_{\omega}} \ge \aleph_{\omega_1}$, then AFSP holds with respect to $\langle \omega_n \rangle_n$.

Therefore, a strategy for proving (in ZFC) that $2^{\aleph_{\omega}} < \aleph_{\omega_1}$ would be to show that AFSP must fail at $\langle \omega_n \rangle_n$. For this, Pereira introduced the notion of a **tree-like scale**.

Tree-Like Scales

Let $\langle \tau_n \rangle_n$ be an increasing sequence of regular cardinals. For two functions $f, g \in \prod_n \tau_n$. $f <^* g$ means f(n) < g(n) for all but finitely many *n*'s.

Let $\vec{f} = \langle f_{\alpha} \mid \alpha < \eta \rangle \subseteq \prod_{n} \tau_{n}$, be a sequence of regular length η .

- 1. \vec{f} is a scale in $\prod_n \tau_n$ if it is increasing and cofinal in the $<^*$ -ordering
- 2. \vec{f} is **continuous** if for every limit ordinal $\delta < \eta$. $\operatorname{cof}(\delta) > \aleph_0$, $\vec{f} \upharpoonright \delta = \langle f_\alpha \mid \alpha < \delta \rangle$ is <*-cofinal in $\prod_n f_\delta(n)$
- 3. \vec{f} is **tree-like** if for every $\alpha, \beta < \eta$ and $n < \omega$, if $f_{\alpha}(n+1) = f_{\beta}(n+1)$ then $f_{\alpha}(n) = f_{\beta}(n)$

Relations between Properties

Let $\langle \tau_n \mid n < \omega \rangle$ be an increasing sequence of regular cardinals, $\lambda = \cup_n \tau_n$.

Fact: Suppose that $\vec{f} = \langle f_{\alpha} \mid \alpha < \eta \rangle$ is a *continuous* scale on $\prod_{n} \tau_{n}$, and $N \prec (H_{\theta}, \langle \tau_{n} \rangle_{n})$ is an *internally approachable* substructure. Then $\chi_{N} =^{*} f_{\delta_{N}}$ where $\delta_{N} = \sup(N \cap \eta)$.

Claim: If there exists a continuous tree-like scale on $\prod_n \tau_n$ then AFSP fails with respect to $\langle \tau_n \rangle$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Pereira)

Continuous tree-like scale (TLS) can exists on a product of $\langle \tau_n \rangle_n$ from an IO sequence

Theorem (Cummings)

Continuous tree-like scale (TLS) can exists above a supercompact cardinal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consistency Results cont.

Theorem (Welch)

If the Approachable Free Subset Property (AFSP) holds w.r.t a sequence $\langle \tau_n \rangle_n$ then there is an **inner model with** a cardinal λ such that $\{o(\mu) \mid \mu < \lambda\}$ is unbounded in λ

Theorem (Gitik)

It is **consistent relative** to a cardinal κ carriving a (κ, κ^{++}) -extender that there is a product $\prod_n \kappa_n^{++}$ which does not carry a continuous TLS.

Questions:

Question1: Is AFSP consistent with respect to some sequence $\langle \tau_n \rangle_n$?

Answer1: Yes

Recall that AFSP with respect to $\langle \tau_n \rangle$ implies that there cannot be a continuous tree-like scale on $\prod_n \tau_n$.

Question2: Is the consistency strength of AFSP strictly stronger than the inexistence of continuous tree-like scale ?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Answer2: No

Consistency Results cont.

Theorem (Adolf-BN)

AFSP w.r.t $\langle \tau_n | n < \omega \rangle$ is consistent relative to the existence of a cardinal λ such that the set of Mitchell orders $\{o(\mu) | \mu < \lambda\}$ is unbounded in λ .

Moreover, the sequence τ_n can be a subsequence of the \aleph_k 's

Theorem (Adolf-BN)

If there exists a product $\prod_n \tau_n$ which does not carry a continuous TLS then there is an inner model with a cardinal λ such that $\{o(\mu) \mid \mu < \lambda\}$ is unbounded in λ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The machinery developed for the proof of the lower-bound reveals that tree-like scales naturally exists in canonical inner models.

Theorem (Adolf-BN)

Let \mathcal{M} be a premouse such that each countable hull has an $(\omega_1 + 1)$ -iteration strategy and suppose that $\langle \tau_n \rangle_n \in \mathcal{M}$ is a sequence of regular cardinals. Then $\prod_{n < \omega} \tau_n$ carries a continuous tree-like scale in \mathcal{M} .

Part II Some Ideas and Insights to the proofs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Diagonal Prikry forcing and Free Sets

Let $\langle \lambda_n \rangle_n$ an increasing sequence of measurable cardinals, and $\vec{U} = \langle U_n \mid n < \omega \rangle$ a sequence of ultrafilters, where each U_n is a λ_n -complete normal measure on λ_n

The Diagonal Prikry forcing $\mathbb{P}_{\vec{U}}$ consists of sequences $p = (p_n \mid n, \omega)$, so that for some $\ell^p < \omega$ the following holds: 1. For $n < \ell^p$, $p_n = \rho_n$ is an ordinal $\rho_n < \lambda_n$ 2. For $n \ge \ell^p$, $p_n = A_n$ where $A_n \in U_n$

When extending a condition p, we may choose finitely many new points $\rho_n \in A_n$ (increasing ℓ^p) and shrink the measure one sets A_n to some $A_n^* \in U_n$. A $\mathbb{P}_{\vec{U}}$ generic filter naturally gives rise to an ω -sequence $\langle \rho_n \mid n < \omega \rangle$ **Claim:** For every function $F : \lambda \to \lambda$ in V there is a cofinite $x \subseteq \langle \rho_n \rangle_n$ which is free with respect to F.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ideas for obtaining the Upper-Bound

Theorem (Adolf-BN)

AFSP w.r.t $\langle \tau_n | n < \omega \rangle$ is consistent relative to the existence of a cardinal λ such that the set of Mitchell orders $\{o(\mu) | \mu < \lambda\}$ is unbounded in λ .

The large cardinal hypothesis allows us to form a model V with a sequence of measurable cardinals $\langle \lambda_n \rangle_n$, each carrying a (baby) extenders $E_n = \{U_{n,\alpha} \mid \alpha < \kappa_n\}$, with κ_n measures, $\lambda_{n-1} < \kappa_n < \lambda_n$.

Force over V with the extender based forcing $\mathbb{P}_{\vec{E}}$. In a generic extension V[G], λ^+ -many new sequences $\langle t_{\alpha} \mid \alpha < \lambda^+ \rangle$ are added $(\lambda = \sup_n \tau_n)$

$$t_{\alpha} = \langle \alpha_n \mid n < \omega \rangle$$

(日)((1))

Every function F in a generic extension V[G] will belong to an intermediate extension $V[G_{\beta}]$ in which only $\beta < \lambda^+$ many sequences were added, $\langle t_{\alpha} \mid \alpha < \beta \rangle$ for some $\beta < \lambda^+$

Taking any $\delta > \beta$, the sequence $t_{\delta} = \langle \delta_n \mid n < \omega \rangle$ is generic over $V[G_{\beta}]$ and will satisfy a property similar to $\langle \rho_n \rangle_n$ in the previous claim. Thus, free with respect to $F \in V[G_{\beta}]$

Ideas for obtaining the Lower-Bound (successor cardinals)

Let $\mathcal{M} \models \mathsf{ZFC}$ - be a premouse such that every countable hull of \mathcal{M} has an $(\omega_1 + 1)$ iteration strategy, $\lambda \in M$ a limit cardinal (in \mathcal{M}) of V-cofinality ω such that λ^+ exists in \mathcal{M} .

Let $\langle \kappa_n \rangle_n$ be a sequence of \mathcal{M} -cardinals cofinal in λ , and $\tau_n := (\kappa_n^+)^{\mathcal{M}}$. We would like to define a sequence in $\prod_{n < \omega} \tau_n$ that is increasing, continuous, and **tree-like**.

For $\alpha < \lambda^+$ we define:

- 1. \mathcal{M}_{α} to be the collapsing level for α
- 2. n_{α} be minimal such that $\rho_{n+1}^{\mathcal{M}_{\alpha}} = \lambda$

3. $p_{\alpha} := p_{n_{\alpha}+1}^{\mathcal{M}_{\alpha}}$, and $w_{\alpha} := w_{n_{\alpha}+1}^{\mathcal{M}_{\alpha}}$ the associated solidity witness

Ideas for obtaining the Lower-Bound, cont.

By the Condensation Lemma there exists some $\mathcal{M}^n_{\alpha} \trianglelefteq \mathcal{M}$ which is isomorphic to $\operatorname{Hull}_{n_{\alpha}+1}^{\mathcal{M}_{\alpha}}(\kappa_n \cup \{p_{\alpha}\}).$

$$f_{\alpha}(n) = \begin{cases} (\kappa_n^+)^{\mathcal{M}_{\alpha}^n} & \{w_{\alpha}, \lambda\} \in \mathsf{Hull}_{n_{\alpha}+1}^{\mathcal{M}_{\alpha}}(\kappa_n \cup \{p_{\alpha}\}) \\ 0 & \text{otherwise} \end{cases}$$

Keys: Let n < m finite. 1. $f_m(\alpha)$ determines \mathcal{M}^m_{α} , as \mathcal{M}^m_{α} is the collapsing level of $f_m(\alpha)$

2. Given n < m, \mathcal{M}^m_{α} determines \mathcal{M}^n_{α} , i.e., by

$$\mathsf{Hull}_{n_{\alpha}+1}^{\mathcal{M}_{\alpha}^{m}}(\kappa_{n}\cup\{p_{n_{\alpha}+1}^{\mathcal{M}_{\alpha}^{m}}\})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

3. Hence $f_{\alpha}(m)$ determines $f_{\alpha}(n)$. This gives the **tree-like property**

Ideas for obtaining the Lower-Bound, cont.

Theorem (Adolf-BN)

If there exists a product $\prod_n \tau_n$ which does not carry a continuous TLS then there is an inner model with a cardinal λ such that $\{o(\mu) \mid \mu < \lambda\}$ is unbounded in λ

We derived from \mathcal{M} a tree-like sequence continuous sequence $\langle f_{\alpha} \mid \alpha < \lambda^+ \rangle$.

Under the smallness assumption of no inner model with the stated large cardinal property, and taking \mathcal{M} to be a suitable initial segment of the core model, a Covering-type argument shows that $\langle f_{\alpha} \mid \alpha < \lambda^+ \rangle$ is a scale in V.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Part III The Approachable Bounded Subset Property and Open Problems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recall AFSP

Definition (Pereira)

The **Approachable Free Subset Property (AFSP)** with respect to $\langle \tau_n \rangle_n$ asserts that for every internally approachable $N \in (H_\theta, \langle \tau_n \rangle_n)$ there is an infinite subset $x \subseteq \{\chi_N(\tau_n) \mid n < \omega\}$ is free over N

This means that for every function $F \in N$ of of finite arity k, and (k+1) distinct values $\chi_N(\tau_{n_0}), \chi_N(\tau_{n_1}), \ldots, \chi_N(\tau_{n_k}) \in x$ we have

$$F(\chi_N(\tau_{n_1}),\ldots,\chi_N(\tau_{n_k}))\neq\chi_N(\tau_{n_0})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition (Approachable Bounded Subset Property (ABSP)) ABSP w.r.t $\langle \tau_n \rangle_n$ asserts that for every internally approachable substructure $N \prec (H_{\theta}, \langle \tau_n \rangle_n)$ there exists some $m < \omega$ so that for every $F \in N$ of some finite arity k, and (k + 1)-distinct numbers $n_0, n_1, \ldots, n_k > m$, we have that

If
$$F(\chi_N(\tau_{n_1}), \ldots, \chi_N(\tau_k n_k)) < \tau_{n_0}$$

then $F(\chi_N(\tau_{n_1}), \ldots, \chi_N(\tau_{n_k})) < \chi_N(\tau_{n_0})$

Equivalently, for the set

$$x = \{\chi_N(\tau_n) \mid n \neq n_0\}$$

we have that

$$\chi_{N[x]}(\tau_{n_0}) = \chi_N(\tau_{n_0})$$

Theorem (Adolf-BN)

ABSP w.r.t $\langle \tau_n \mid n < \omega \rangle$ is equi-consistent with the existence of a cardinal λ such that the set of Mitchell orders $\{o(\mu) \mid \mu < \lambda\}$ is unbounded in λ .

Moreover, the sequence τ_n can be a subsequence of the \aleph_k 's **Remark:** In the above theorem, ABSP is shown to hold on a subsequence of the \aleph_k 's with gaps.

Question1: Is ABSP (or a cofinite version of AFSP) consistent with respect to a tail of the $\langle \aleph_n \rangle_n$.

Question2: Can the principles AFSP, ABSP remain consistent if we remove the restriction to internally approachable structures?

Pereira proved from the assumption of a cardinal κ which is κ^{++} -supercompact, that it is consistent to have a (long) continuous tree-like scale $\langle f_{\alpha} \mid \alpha < \kappa^{++} \rangle$ on a product of cardinals $\langle \kappa_n \rangle_n$ cofinal in κ .

Question3: Is it possible to obtain a long continuous tree-like scale from an assumption of a strong cardinal?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A Stronger Principle

Consider the following natural strengthening of ABSP, where for $\chi_N(\tau_{n_0}) < \chi_N(\tau_{n_1}) < \ldots \chi_N(\tau_{n_k})$, the requirement-

"If
$$F(\chi_N(\tau_{n_1}), \ldots, \chi_N(\tau_k n_k)) < \tau_{n_0}$$

then $F(\chi_N(\tau_{n_1}), \ldots, \chi_N(\tau_{n_k})) < \chi_N(\tau_{n_0})$ "

Is replaced with-

"If
$$F(\chi_N(\tau_{n_1}), \ldots, \chi_N(\tau_k n_k)) < \tau_{n_0}$$

then $F(\chi_N(\tau_{n_1}), \ldots, \chi_N(\tau_{n_k})) \in N \cap \tau_{n_0}$ "
Question4: Is it consistent?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @