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CW complexes

For algebraic topology, even spheres are hard.

So, focus on CW complexes: spaces built up by gluing on Euclidean discs of
higher and higher dimension.

For n ∈ N, denote by

Dn the closed ball of radius 1 about the origin in Rn (the n-disc),
◦
Dn its interior, and

Sn−1 its boundary (the (n − 1)-sphere).
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CW complexes

Definition
A Hausdorff space X is a CW complex if there exists a set of continuous functions
ϕα : Dn → X (characteristic maps), for α in an arbitrary index set and n ∈ N a
function of α, such that:

1 ϕα �
◦
Dn is a homeomorphism to its image, and X is the disjoint union as α

varies of these homeomorphic images ϕα[
◦
Dn] (“cells”).

2 Closure-finiteness: For each ϕα, ϕα[Sn−1] is contained in finitely many cells
all of dimension less than n.

3 Weak topology: A set is closed if and only if its intersection with each closed
cell ϕα[Dn] is closed.

We often denote ϕα[
◦
Dn] by enα or just eα.
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Not necessarily metrizable

Let X be the “star” with a central vertex x0 and countably many edges e1X ,n
(n ∈ N) emanating from it (and the countably many “other end” vertices of those
edges).

X is not metrizable, as x0 does not have a countable neighbourhood base.

Proof
Identify each edge with the unit interval, with x0 at 0. For every f : N→ N,
consider the open neighbourhood U(x0; f ) of x0 whose intersection with e1X ,n is
the interval [ 0, 1/(f (n) + 1) ).

These form a neighbourhood base, but for any countably many fi , there is a g
that is not dominated by any of them, so U(x0; g) does not contain any of the
U(x0; fi ).
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Trouble in paradise

Issue:
The Cartesian product of two CW complexes X and Y , with the product
topology, need not be a CW complex.

Since Dm × Dn ∼= Dm+n, there is a natural cell structure on X × Y , which
satisfies closure-finiteness, but the product topology is generally not as fine as the
weak topology.

Convention
In this talk, X × Y is always taken to have the product topology, so “X × Y is a
CW complex” means “the product topology on X × Y is the same as the weak
topology”.
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Example (Dowker, 1952)

Let X be the “star” with a central vertex x0 and countably many edges e1X ,n
(n ∈ N) emanating from it (and the countably many “other end” vertices of those
edges).

Let Y be the “star” with a central vertex y0 and 2ℵ0 many edges e1Y ,f (f ∈ NN)
emanating from it (and the other ends).

Consider the subset of X × Y

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}
where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X × Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1
g(n) ) ⊂ e1X ,n ∩ U for every

n ∈ N.

Consider the edge e1Y ,g of Y :

Let k ∈ N be such that 1
g(k)+1 ∈ e1Y ,g ∩ V .

Then
(

1
g(k)+1 ,

1
g(k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.
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More preliminaries: subcomplexes

A subcomplex A of a CW complex X is what you would expect.

E.g.

For any CW complex X and n ∈ N, the n-skeleton X n of X is the subcomplex of
X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X .
By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition
Let κ be a cardinal. We say that a CW complex X is locally less than κ if for all x
in X there is a subcomplex A of X with fewer than κ many cells such that x is in
the interior of A. We write locally finite for locally less than ℵ0, and locally
countable for locally less than ℵ1.
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Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ
if and only if every connected component of W has fewer than κ many cells.

Proof sketch.

⇐ is trivial. For ⇒, given any point w , recursively fill out to get an open (hence
clopen) subcomplex containing w with fewer than κ many cells, using the fact that
the cells are compact to control the number of cells along the way if κ < 2ℵ0 .
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What was known

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then X × Y is a CW complex.

Footnote: “I do not know if this restriction on [X or Y ] is necessary.”

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then X × Y is a CW complex.

Theorem (Y. Tanaka, 1982)

If neither X nor Y is locally countable, then X × Y is not a CW complex.
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What was known, beyond ZFC

Theorem (Liu Y.-M., 1978)

Assuming the Continuum Hypothesis, X ×Y is a CW complex if and only if either

one of them is locally finite, or

both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming b = ℵ1, X × Y is a CW complex if and only if either

one of them is locally finite, or

both are locally countable.
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Can we do better?

Question
Can we show, without assuming any extra set-theoretic axioms, that the product
X × Y of CW complexes X and Y is a CW complex if and only if either

one of them is locally finite, or

both are locally countable?

Answer (follows from Tanaka’s work)

No.
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Can we nevertheless do better?

Updated question

Can we characterise exactly when the product of two CW complexes is a CW
complex, without assuming any extra set-theoretic axioms?

Answer (B.-T.)

Yes!
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Pushing Dowker’s example harder

In the argument for Dowker’s example, there was a lot of inefficiency — we can
do better, with the bigger star Y potentially having fewer (but still uncountably
many) edges.

Recall

For f , g ∈ NN, we write f ≤∗ g if for all but finitely many n ∈ N,
f (n) ≤ g(n).

The bounding number b is the least cardinality of a set of functions that is
unbounded with respect to ≤∗, i.e. such that no one g is ≥∗ them all, i.e.,

b = min{|F| : F ⊆ NN ∧ ∀g ∈ NN∃f ∈ F¬(f ≤∗ g)}.
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Example (Dowker, 1952)

Let X be the “star” with a central vertex x0 and countably many edges e1X ,n
(n ∈ N) emanating from it (and the countably many “other end” vertices of those
edges).
Let Y be the “star” with a central vertex y0 and 2ℵ0 many edges e1Y ,f (f ∈ NN)
emanating from it (and the other ends).

Consider the subset of X × Y

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}
where we have identified each edge with the unit interval, with 0 at the centre
vertex.

Since every cell of X × Y contains at most one point of H, H is closed in the
weak topology.
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Example (Dowker, 1952)

H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ NN

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1
g(n) ) ⊂ e1X ,n ∩ U for every

n ∈ N.

Consider the edge e1Y ,g of Y :

Let k ∈ N be such that 1
g(k)+1 ∈ e1Y ,g ∩ V .

Then
(

1
g(k)+1 ,

1
g(k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.
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H =

{(
1

f (n) + 1
,

1

f (n) + 1

)
∈ e1X ,n × e1Y ,f : n ∈ N, f ∈ F

}

Let U × V be a member of the open neighbourhood base about (x0, y0) in the
product topology on X × Y — so x0 ∈ U an open subset of X , and y0 ∈ V an
open subset of Y .

Consider the edges e1X ,n of X :

Let g : N→ N+ be an increasing function such that [0, 1
g(n) ) ⊂ e1X ,n ∩ U for every

n ∈ N. Take f ∈ F such that f �∗ g .

Consider the edge e1Y ,f of Y :

Let k ∈ N be such that 1
f (k)+1 ∈ e1Y ,f ∩ V and f (k) > g(k).

Then
(

1
f (k)+1 ,

1
f (k)+1

)
∈ U × V ∩ H. So in the product topology, (x0, y0) ∈ H̄.

Andrew Brooke-Taylor (Leeds) Products of CW complexes 18 / 33



Is this harder-working Dowker example optimal?

Yes!
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A complete characterisation

Theorem (B.-T.)

Let X and Y be CW complexes. Then X × Y is a CW complex if and only if one
of the following holds:

1 X or Y is locally finite.

2 One of X and Y is locally countable, and the other is locally less than b.
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Proof

⇒: follows from the work of Tanaka (1982).

⇐: locally finite case: Whitehead (1949).

So it remains to show that if X and Y are CW complexes such that X is locally
countable and Y is locally less than b, then X × Y is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and
Y has fewer than b many cells.
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Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and
each closed cell ēnα is compact. So

X has the weak topology ⇔ the topology is compactly generated

i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the
compact space ω + 1 (with the order topology).

Definition
A topological space Z is sequential if for every subset C of Z , C is closed if and
only if C contains the limit of every convergent countable sequence from C (C is
sequentially closed).

Any sequential space is compactly generated. Since Dn is sequential for every n,
we have that CW complexes are sequential.
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Need to show: X × Y is sequential.

So suppose

H ⊂ X × Y is sequentially closed, and

(x0, y0) ∈ X × Y \ H.

We want to construct open neighbourhoods U of x0 in X and V of y0 in Y such
that (U × V ) ∩ H = ∅.
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Constructing neighbourhoods

We can build an open neighbourhood U of a point x in a CW complex X by
induction on dimension:

If x ∈ enα ⊂ X , start with the image under ϕα of an open ball in
◦
Dn. This

defines U ∩ X n.

Once U ∩ X k is defined, for each (k + 1)-cell ek+1
β whose boundary intersects

U ∩ X k , take a collar neighbourhood of ϕ−1β (U ∩ X k) in Dk+1: for any
positive integer m, we can take a collar of the form

(
m − 1

m
, 1] · ϕ−1β (U ∩ X k) ⊂ Dk+1 ⊂ Rk+1.

For any function f from the set of indices of cells in X to N we thus get an open
neighbourhood U(x ; f ), taking radius/collar width 1

f (β)+1 for the cell β step.
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Lemma
Such open neighbourhoods form a base for the topology on X .

Proof.
Follow your nose, recursively constructing a neighbourhood of this form whose
closure is a subset of any given open neighbourhood. Since each Sk is compact,
there will be a collar width m sufficiently large to do this for each subsequent
cell.

Andrew Brooke-Taylor (Leeds) Products of CW complexes 25 / 33



Lemma
Such open neighbourhoods form a base for the topology on X .

Proof.
Follow your nose, recursively constructing a neighbourhood of this form whose
closure is a subset of any given open neighbourhood. Since each Sk is compact,
there will be a collar width m sufficiently large to do this for each subsequent
cell.

Andrew Brooke-Taylor (Leeds) Products of CW complexes 25 / 33



Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

W and Z are CW complexes,

W ′ is a finite subcomplex of W ,

Z ′ is a finite subcomplex of Z ,

U ⊆W ′ is open in W ′,

V ⊆ Z ′ is open in Z ′, and

H is a sequentially closed subset of W × Z such that the closure of U × V is
disjoint from H.

Let e be a cell of Z whose boundary is contained in Z ′. Then there is a p ∈ N
such that, if V e,p is V extended by the width 1/(p + 1) collar in e, then U × V e,p

has closure disjoint from H.

Proof sketch.

Use the fact that W ′ × (Z ′ ∪ e) is sequential, normal, and compact.
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Back to the proof of the Theorem

We want to construct open neighbourhoods U of x0 in X and V of y0 in Y such
that (U × V ) ∩ H = ∅.

We shall construct functions f : N→ N and g : J → N, where J is the index set
for cells of Y , such that U(x0; f )× U(y0; g) has closure disjoint from H.

First idea
Simultaneous induction on dimension on each side.

For each new cell ekα that you consider on the Y side, you get a function fα
defining an open subset of X k avoiding H. Since there are fewer than b many α,
they can be eventually dominated by a single function f , which is taken to define
the open set on X k , and with respect to which the ekα collar can be chosen.

This doesn’t work (fα ≤∗ f isn’t good enough).
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≤∗ isn’t good enough

If fα(n) ≤ f (n) for all n, then U(x ; fα) ⊇ U(x ; f ).

If fα(n) ≤∗ f (n), then there may be finitely many n for which fα(n) > f (n).

For 1-dimensional examples (Dowker, Tanaka), this isn’t a big deal.

For arbitrary CW complexes, where higher dimensional cells can glue on to
those finitely many cells, it’s a problem.

Solution
Hechler conditions!
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Making it work

The construction is actually by recursion on dimension on the Y side, and
simultaneously, constructing f as the limit of a sequence of Hechler conditions,
that is:

finite initial segments of f , and

promises to dominate some function F thereafter.
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Making it work

Lemma 2 (Adding a Y -side cell, fitting X -side promises)

Let

Y ′ be a finite subcomplex of Y containing y0,

F : N→ N be a function,

i ∈ N,

s be a function from the indices of Y ′ to N such that
U(x0;F )× U(y0; s) ⊆ X × Y ′ has closure disjoint from H, and

Y ′′ = Y ′ ∪ eα for some cell eα of Y not in Y ′.

Then there is a function f : N→ N such that

1 f (n) ≥ F (n) for all n in N, and f (n) = F (N) for all n < i ,

2 for every f ′ : N→ N such that f ′ ≥∗ f and f ′ ≥ F , there is a q ∈ N such
that U(x0; f ′)× U(y0; s ∪ {(α, q)}) has closure disjoint from H.
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i ∈ N,

s be a function from the indices of Y ′ to N such that
U(x0;F )× U(y0; s) ⊆ X × Y ′ has closure disjoint from H, and

Y ′′ = Y ′ ∪ eα for some cell eα of Y not in Y ′.

Then there is a function f : N→ N such that

1 f (n) ≥ F (n) for all n in N, and f (n) = F (N) for all n < i ,

2 for every f ′ : N→ N such that f ′ ≥∗ f and f ′ ≥ F , there is a q ∈ N such
that U(x0; f ′)× U(y0; s ∪ {(α, q)}) has closure disjoint from H.
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Proof of Lemma 2

For every finite tuple r of length n such that r ≥ F �n, U(x0; r) ⊂ U(x0;F ), so
U(x0; r)× U(y0; s) certainly has closure disjoint from H.

By Lemma 1, we can then take qr ∈ N such that U(x0; r)× U(y0; s ∪ {(α, qr )})
has closure disjoint from H.

Then by Lemma 1 again, there is p ∈ N such that
U(x0; r ∪ {(n, p)})× U(y0; s ∪ {(α, qr )}) has closure disjoint from H.
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Now, assuming by induction we have defined f �n for some n ≥ i , there are only
finitely many r with F �n ≤ r ≤ f �n; follow this procedure for all of them, and
take the maximum of the resulting values p to be f (n). Recursively do this for all
n ≥ i .

Then for any f ′ ≥ F with f ′ ≥∗ f , f ′ ≥ r ∪ (f � [n,∞)) for some n ≥ i and some r
of length n as above, so

U(x0; f ′ �n + 1)× U(y0; s ∪ {(α, qr )}) has closure disjoint from H,

and in fact

U(x0; f ′)× U(y0; s ∪ {(α, qr )}) has closure disjoint from H.

Lemma 2
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Finishing the proof of the Theorem

With Lemma 2 in hand, the argument is now basically as outlined in the “First
idea”:

Proceed by induction on dimension on the Y side. Assume we have defined
fk : N→ N and g �Y k . For each (k + 1)-dimensional cell eα on the Y side, use
Lemma 2 with

fk as F ,

k as i ,

the minimal (finite) subcomplex of Y containing eα and y0 as Y ′′, and

g �(Y ′′ r eα) as s

to get fα,k+1. There are fewer than b many such fα,k+1, so take fk+1 ≥ fk with
fk+1 �k = fk �k eventually dominating all of them. Then take q as given by
Lemma 2 (with fk+1 as f ′) as g(α).

Finally, take f to be the (componentwise) limit of the fk+1; these f and g are
such that U(x0; f )× U(y0; g) has closure disjoint from H.
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