Products of CW complexes

Andrew Brooke-Taylor

2

イロン イ団 とくほと くほとう

For algebraic topology, even spheres are hard.

So, focus on *CW complexes*: spaces built up by gluing on Euclidean discs of higher and higher dimension.

・ロン ・四 と ・ ヨ と ・ ヨ と …

For algebraic topology, even spheres are hard.

So, focus on *CW complexes*: spaces built up by gluing on Euclidean discs of higher and higher dimension.

For $n \in \mathbb{N}$, denote by

- D^n the closed ball of radius 1 about the origin in \mathbb{R}^n (the *n*-disc),
- D^n its interior, and
- S^{n-1} its boundary (the (n-1)-sphere).

< ロ > < 同 > < 回 > < 回 > < □ > <

A Hausdorff space X is a *CW complex* if there exists a set of continuous functions $\varphi_{\alpha} : D^n \to X$ (*characteristic maps*), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α , such that:

• $\varphi_{\alpha} \upharpoonright \vec{D}^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}[\overset{\circ}{D}^{n}]$ ("cells").

・ロト ・回ト ・ヨト ・ヨト

A Hausdorff space X is a *CW complex* if there exists a set of continuous functions $\varphi_{\alpha} : D^n \to X$ (*characteristic maps*), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α , such that:

- $\varphi_{\alpha} \upharpoonright D^{n}$ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images $\varphi_{\alpha}[D^{n}]$ ("cells").
- Closure-finiteness: For each φ_α, φ_α[Sⁿ⁻¹] is contained in finitely many cells all of dimension less than n.

< ロ > < 同 > < 回 > < 回 > < □ > <

A Hausdorff space X is a *CW complex* if there exists a set of continuous functions $\varphi_{\alpha} : D^n \to X$ (*characteristic maps*), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α , such that:

- φ_α ↾ D̃ⁿ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images φ_α[Dⁿ] ("cells").
- Closure-finiteness: For each φ_α, φ_α[Sⁿ⁻¹] is contained in finitely many cells all of dimension less than n.
- Weak topology: A set is closed if and only if its intersection with each closed cell φ_α[Dⁿ] is closed.

イロト 不得下 イヨト イヨト 二日

A Hausdorff space X is a *CW complex* if there exists a set of continuous functions $\varphi_{\alpha} : D^n \to X$ (*characteristic maps*), for α in an arbitrary index set and $n \in \mathbb{N}$ a function of α , such that:

- φ_α ↾ D̃ⁿ is a homeomorphism to its image, and X is the disjoint union as α varies of these homeomorphic images φ_α[Dⁿ] ("cells").
- Closure-finiteness: For each φ_α, φ_α[Sⁿ⁻¹] is contained in finitely many cells all of dimension less than n.
- Weak topology: A set is closed if and only if its intersection with each closed cell φ_α[Dⁿ] is closed.

We often denote $\varphi_{\alpha}[\overset{\circ}{D^n}]$ by e_{α}^n or just e_{α} .

イロト 不得下 イヨト イヨト 二日

Not necessarily metrizable

2

イロン イ団と イヨン イヨン

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

(日) (周) (王) (王)

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

X is not metrizable, as x_0 does not have a countable neighbourhood base.

Proof

Identify each edge with the unit interval, with x_0 at 0. For every $f : \mathbb{N} \to \mathbb{N}$, consider the open neighbourhood $U(x_0; f)$ of x_0 whose intersection with $e_{X,n}^1$ is the interval [0, 1/(f(n) + 1)).

These form a neighbourhood base, but for any countably many f_i , there is a g that is not dominated by any of them, so $U(x_0; g)$ does not contain any of the $U(x_0; f_i)$.

Trouble in paradise

2

イロン イヨン イヨン イヨン

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

イロト イヨト イヨト イヨト

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$,

イロト 不得 トイヨト イヨト

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness,

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Cartesian product of two CW complexes X and Y, with the product topology, need not be a CW complex.

Since $D^m \times D^n \cong D^{m+n}$, there is a natural cell structure on $X \times Y$, which satisfies closure-finiteness, but the product topology is generally not as fine as the weak topology.

Convention

In this talk, $X \times Y$ is always taken to have the product topology, so " $X \times Y$ is a CW complex" means "the product topology on $X \times Y$ is the same as the weak topology".

イロン イロン イヨン イヨン 三日

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

イロン イ団と イヨン イヨン

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and 2^{\aleph_0} many edges $e_{Y,f}^1$ $(f \in \mathbb{N}^{\mathbb{N}})$ emanating from it (and the other ends).

< ロ > < 同 > < 回 > < 回 > < □ > <

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and 2^{\aleph_0} many edges $e_{Y,f}^1$ $(f \in \mathbb{N}^{\mathbb{N}})$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and 2^{\aleph_0} many edges $e_{Y,f}^1$ $(f \in \mathbb{N}^{\mathbb{N}})$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

イロン イロン イヨン イヨン 三日

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

2

イロン イ団と イヨン イヨン

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

< ロ > < 同 > < 回 > < 回 > < □ > <

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges $e_{X,n}^1$ of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e_{X,n}^1 \cap U$ for every $n \in \mathbb{N}$.

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges $e_{X,n}^1$ of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y,g}^1$ of Y:

Let $k \in \mathbb{N}$ be such that $\frac{1}{g(k)+1} \in e_{Y,g}^1 \cap V$.

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges $e_{X,n}^1$ of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y,g}^1$ of Y:

Let
$$k \in \mathbb{N}$$
 be such that $\frac{1}{g(k)+1} \in e^1_{Y,g} \cap V$.

Then $\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times V \cap H$. So in the product topology, $(x_0, y_0) \in \overline{H}$.

A subcomplex A of a CW complex X is what you would expect.

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\bar{e_{\alpha}^{n}} = \varphi_{\alpha}^{n}[D^{n}]$ is contained in A.

< ロ > < 同 > < 回 > < 回 > < 回 > <

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\bar{e_{\alpha}^{n}} = \varphi_{\alpha}^{n}[D^{n}]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the *n*-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

< ロ > < 同 > < 回 > < 回 > < 回 > <

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\bar{e_{\alpha}^{n}} = \varphi_{\alpha}^{n}[D^{n}]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the *n*-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X.

イロト 不得 トイヨト イヨト

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\bar{e_{\alpha}^{n}} = \varphi_{\alpha}^{n}[D^{n}]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the *n*-skeleton Xⁿ of X is the subcomplex of X which is the union of all cells of X of dimension at most *n*.

Every subcomplex A of X is closed in X. By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

・ロト ・回ト ・ヨト ・ヨト

A subcomplex A of a CW complex X is a subspace which is a union of cells of X, such that if $e_{\alpha}^{n} \subseteq A$ then its closure $\bar{e_{\alpha}^{n}} = \varphi_{\alpha}^{n}[D^{n}]$ is contained in A.

E.g.

For any CW complex X and $n \in \mathbb{N}$, the *n*-skeleton X^n of X is the subcomplex of X which is the union of all cells of X of dimension at most n.

Every subcomplex A of X is closed in X. By closure-finiteness, every x in a CW complex X lies in a finite subcomplex.

Definition

Let κ be a cardinal. We say that a CW complex X is *locally less than* κ if for all x in X there is a subcomplex A of X with fewer than κ many cells such that x is in the interior of A. We write *locally finite* for locally less than \aleph_0 , and *locally countable* for locally less than \aleph_1 .

Proposition

If κ is a regular uncountable cardinal, then a CW complex W is locally less than κ if and only if every connected component of W has fewer than κ many cells.

Proof sketch.

 \Leftarrow is trivial. For \Rightarrow , given any point w, recursively fill out to get an open (hence clopen) subcomplex containing w with fewer than κ many cells, using the fact that the cells are compact to control the number of cells along the way if $\kappa < 2^{\aleph_0}$. \Box

What was known

Suppose X and Y are CW complexes.

2

イロン イヨン イヨン イヨン

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."

(日) (周) (王) (王)

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.

イロト 不得 トイヨト イヨト

Suppose X and Y are CW complexes.

Theorem (J.H.C. Whitehead, 1949)

If X or Y is locally finite, then $X \times Y$ is a CW complex.

Footnote: "I do not know if this restriction on [X or Y] is necessary."

Theorem (J. Milnor, 1956)

If X and Y are both (locally) countable, then $X \times Y$ is a CW complex.

Theorem (Y. Tanaka, 1982)

If neither X nor Y is locally countable, then $X \times Y$ is not a CW complex.

イロト 不得 トイヨト イヨト

Theorem (Liu Y.-M., 1978)

Assuming the Continuum Hypothesis, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

イロト 不得 トイヨト イヨト

Theorem (Liu Y.-M., 1978)

Assuming the Continuum Hypothesis, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

Theorem (Y. Tanaka, 1982)

Assuming $\mathfrak{b} = \aleph_1$, $X \times Y$ is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable.

(日) (周) (王) (王)

Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?

Question

Can we show, without assuming any extra set-theoretic axioms, that the product $X \times Y$ of CW complexes X and Y is a CW complex if and only if either

- one of them is locally finite, or
- both are locally countable?

Answer (follows from Tanaka's work) No.

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

イロト 不得 トイヨト イヨト

Updated question

Can we characterise exactly when the product of two CW complexes is a CW complex, without assuming any extra set-theoretic axioms?

Answer (B.-T.)

Yes!

< ロ > < 同 > < 回 > < 回 > < 回 > <

In the argument for Dowker's example, there was a lot of inefficiency — we can do better, with the bigger star Y potentially having fewer (but still uncountably many) edges.

(日) (周) (王) (王)

In the argument for Dowker's example, there was a lot of inefficiency — we can do better, with the bigger star Y potentially having fewer (but still uncountably many) edges.

Recall

- For $f, g \in \mathbb{N}^{\mathbb{N}}$, we write $f \leq^* g$ if for all but finitely many $n \in \mathbb{N}$, $f(n) \leq g(n)$.
- The bounding number b is the least cardinality of a set of functions that is unbounded with respect to \leq^* , i.e. such that no one g is \geq^* them all, i.e.,

$$\mathfrak{b} = \min\{|\mathcal{F}|: \mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}} \land \forall g \in \mathbb{N}^{\mathbb{N}} \exists f \in \mathcal{F} \neg (f \leq^{*} g)\}.$$

イロト 不得 トイヨト イヨト

Example (Dowker, 1952)

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and 2^{\aleph_0} many edges $e_{Y,f}^1$ $(f \in \mathbb{N}^{\mathbb{N}})$ emanating from it (and the other ends).

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

イロン イロン イヨン イヨン 三日

Example (Folklore based on Dowker, 1952)

Let X be the "star" with a central vertex x_0 and countably many edges $e_{X,n}^1$ $(n \in \mathbb{N})$ emanating from it (and the countably many "other end" vertices of those edges).

Let Y be the "star" with a central vertex y_0 and \mathfrak{b} many edges $e_{Y,f}^1$ $(f \in \mathcal{F})$ emanating from it (and the other ends) where $\mathcal{F} \subseteq \mathbb{N}^{\mathbb{N}}$ is unbounded w.r.t. \leq^* .

Consider the subset of $X \times Y$

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathcal{F} \right\}$$

where we have identified each edge with the unit interval, with 0 at the centre vertex.

Since every cell of $X \times Y$ contains at most one point of H, H is closed in the weak topology.

Example (Dowker, 1952)

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}\right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathbb{N}^{\mathbb{N}} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges $e_{X,n}^1$ of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$.

Consider the edge $e_{Y,g}^1$ of Y:

Let
$$k \in \mathbb{N}$$
 be such that $\frac{1}{g(k)+1} \in e^1_{Y,g} \cap V$.

Then $\left(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}\right) \in U \times V \cap H$. So in the product topology, $(x_0, y_0) \in \overline{H}$.

Example (Folklore based on Dowker, 1952)

$$H = \left\{ \left(\frac{1}{f(n)+1}, \frac{1}{f(n)+1} \right) \in e_{X,n}^1 \times e_{Y,f}^1 : n \in \mathbb{N}, f \in \mathcal{F} \right\}$$

Let $U \times V$ be a member of the open neighbourhood base about (x_0, y_0) in the product topology on $X \times Y$ — so $x_0 \in U$ an open subset of X, and $y_0 \in V$ an open subset of Y.

Consider the edges $e_{X,n}^1$ of X:

Let $g: \mathbb{N} \to \mathbb{N}^+$ be an increasing function such that $[0, \frac{1}{g(n)}) \subset e^1_{X,n} \cap U$ for every $n \in \mathbb{N}$. Take $f \in \mathcal{F}$ such that $f \nleq^* g$.

Consider the edge $e_{Y,f}^1$ of Y:

Let $k \in \mathbb{N}$ be such that $\frac{1}{f(k)+1} \in e_{Y,f}^1 \cap V$ and f(k) > g(k).

Then $\left(\frac{1}{f(k)+1}, \frac{1}{f(k)+1}\right) \in U \times V \cap H$. So in the product topology, $(x_0, y_0) \in \overline{H}$. Andrew Brooks-Taylor (Leeds) Products of CW complexes 18 / 33 Is this harder-working Dowker example optimal?

2

イロト イヨト イヨト イヨト

Is this harder-working Dowker example optimal?

Yes!

2

イロト イヨト イヨト イヨト

Theorem (B.-T.)

Let X and Y be CW complexes. Then $X \times Y$ is a CW complex if and only if one of the following holds:

- X or Y is locally finite.
- **2** One of X and Y is locally countable, and the other is locally less than \mathfrak{b} .

ヘロト 人間ト 人団ト 人団トー

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Proof ⇒:

Andrew Brooke-Taylor (Leeds)

◆□> ◆□> ◆臣> ◆臣> ─ 臣

 \Rightarrow : follows from the work of Tanaka (1982).

2

イロン イヨン イヨン イヨン

 \Rightarrow : follows from the work of Tanaka (1982).

⇐:

2

イロン イヨン イヨン イヨン

 \Rightarrow : follows from the work of Tanaka (1982).

 \Leftarrow : locally finite case: Whitehead (1949).

2

イロト イヨト イヨト イヨト

 \Rightarrow : follows from the work of Tanaka (1982).

 \Leftarrow : locally finite case: Whitehead (1949).

So it remains to show that if X and Y are CW complexes such that X is locally countable and Y is locally less than \mathfrak{b} , then $X \times Y$ is a CW complex.

By the Proposition earlier, we may assume that X has countably many cells and Y has fewer than b many cells.

イロト イポト イヨト イヨト

Topologies

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}^n_{α} is compact. So

X has the weak topology \Leftrightarrow the topology is *compactly generated*

i.e. a set is closed if and only if its intersection with every compact set is closed.

(日) (周) (王) (王)

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}^n_{α} is compact. So

X has the weak topology \Leftrightarrow the topology is *compactly generated*

i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the compact space $\omega + 1$ (with the order topology).

Definition

A topological space Z is *sequential* if for every subset C of Z, C is closed if and only if C contains the limit of every convergent countable sequence from C (C is *sequentially closed*).

<ロ> <四> <四> <四> <三</p>

Any compact subset of a CW complex X is contained in finitely many cells, and each closed cell \bar{e}^n_{α} is compact. So

X has the weak topology \Leftrightarrow the topology is *compactly generated*

i.e. a set is closed if and only if its intersection with every compact set is closed.

We can also restrict to those compact sets which are continuous images of the compact space $\omega + 1$ (with the order topology).

Definition

A topological space Z is *sequential* if for every subset C of Z, C is closed if and only if C contains the limit of every convergent countable sequence from C (C is *sequentially closed*).

Any sequential space is compactly generated. Since D^n is sequential for every n, we have that CW complexes are sequential.

イロン イヨン イヨン イヨン 三日

Need to show: $X \times Y$ is sequential.

2

イロト イヨト イヨト イヨト

Need to show: $X \times Y$ is sequential.

So suppose

- $H \subset X \times Y$ is sequentially closed, and
- $(x_0, y_0) \in X \times Y \setminus H$.

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

3

・ロト ・回ト ・ヨト ・ヨト

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

イロト イヨト イヨト イヨト

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

• If $x \in e_{\alpha}^{n} \subset X$, start with the image under φ_{α} of an open ball in D^{n} .

イロト イヨト イヨト イヨト

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

If x ∈ eⁿ_α ⊂ X, start with the image under φ_α of an open ball in Dⁿ. This defines U ∩ Xⁿ.

ヘロト 人間ト 人団ト 人団トー

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e_{\alpha}^n \subset X$, start with the image under φ_{α} of an open ball in D^n . This defines $U \cap X^n$.
- Once U ∩ X^k is defined, for each (k + 1)-cell e^{k+1}_β whose boundary intersects U ∩ X^k, take a *collar neighbourhood* of φ⁻¹_β(U ∩ X^k) in D^{k+1}: for any positive integer m, we can take a collar of the form

$$(\frac{m-1}{m},1]\cdot \varphi_{\beta}^{-1}(U\cap X^k)\subset D^{k+1}\subset \mathbb{R}^{k+1}.$$

・ロン ・四 と ・ ヨ と ・ ヨ と

We can build an open neighbourhood U of a point x in a CW complex X by induction on dimension:

- If $x \in e_{\alpha}^n \subset X$, start with the image under φ_{α} of an open ball in D^n . This defines $U \cap X^n$.
- Once $U \cap X^k$ is defined, for each (k + 1)-cell e_{β}^{k+1} whose boundary intersects $U \cap X^k$, take a *collar neighbourhood* of $\varphi_{\beta}^{-1}(U \cap X^k)$ in D^{k+1} : for any positive integer *m*, we can take a collar of the form

$$(rac{m-1}{m},1]\cdot arphi_{eta}^{-1}(U\cap X^k)\subset D^{k+1}\subset \mathbb{R}^{k+1}.$$

For any function f from the set of indices of cells in X to \mathbb{N} we thus get an open neighbourhood U(x; f), taking radius/collar width $\frac{1}{f(\beta)+1}$ for the cell β step.

Lemma

Such open neighbourhoods form a base for the topology on X.

2

イロン イヨン イヨン イヨン

Lemma

Such open neighbourhoods form a base for the topology on X.

Proof.

Follow your nose, recursively constructing a neighbourhood of this form *whose closure* is a subset of any given open neighbourhood. Since each S^k is compact, there will be a collar width *m* sufficiently large to do this for each subsequent cell.

- A TEN A TEN

Constructing neighbourhoods avoiding H

2

イロン イヨン イヨン イヨン

Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

3

・ロト ・回ト ・ヨト ・ヨトー

Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

- W and Z are CW complexes,
- W' is a finite subcomplex of W,
- Z' is a finite subcomplex of Z,
- $U \subseteq W'$ is open in W',
- $V \subseteq Z'$ is open in Z', and
- *H* is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from *H*.

Let e be a cell of Z whose boundary is contained in Z'. Then there is a $p \in \mathbb{N}$ such that, if $V^{e,p}$ is V extended by the width 1/(p+1) collar in e, then $U \times V^{e,p}$ has closure disjoint from H.

イロト 不得 トイヨト イヨト

Constructing neighbourhoods avoiding H

Lemma 1 (Adding one cell to finite subcomplexes)

Suppose

- W and Z are CW complexes,
- W' is a finite subcomplex of W,
- Z' is a finite subcomplex of Z,
- $U \subseteq W'$ is open in W',
- $V \subseteq Z'$ is open in Z', and
- *H* is a sequentially closed subset of $W \times Z$ such that the closure of $U \times V$ is disjoint from *H*.

Let e be a cell of Z whose boundary is contained in Z'. Then there is a $p \in \mathbb{N}$ such that, if $V^{e,p}$ is V extended by the width 1/(p+1) collar in e, then $U \times V^{e,p}$ has closure disjoint from H.

Proof sketch.

Use the fact that $W' imes (Z' \cup e)$ is sequential, normal, and compact.

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

イロン イヨン イヨン イヨン

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.

イロン イ団と イヨン イヨン

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.

First idea

Simultaneous induction on dimension on each side.

For each new cell e_{α}^{k} that you consider on the Y side, you get a function f_{α} defining an open subset of X^{k} avoiding H. Since there are fewer than b many α , they can be eventually dominated by a single function f, which is taken to define the open set on X^{k} , and with respect to which the e_{α}^{k} collar can be chosen.

イロン イロン イヨン イヨン 三日

We want to construct open neighbourhoods U of x_0 in X and V of y_0 in Y such that $(U \times V) \cap H = \emptyset$.

We shall construct functions $f : \mathbb{N} \to \mathbb{N}$ and $g : J \to \mathbb{N}$, where J is the index set for cells of Y, such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.

First idea

Simultaneous induction on dimension on each side.

For each new cell e_{α}^{k} that you consider on the Y side, you get a function f_{α} defining an open subset of X^{k} avoiding H. Since there are fewer than \mathfrak{b} many α , they can be eventually dominated by a single function f, which is taken to define the open set on X^{k} , and with respect to which the e_{α}^{k} collar can be chosen.

This doesn't work ($f_{\alpha} \leq^* f$ isn't good enough).

・ロン ・四 と ・ 回 と ・ 回 と

If $f_{\alpha}(n) \leq^* f(n)$, then there may be finitely many *n* for which $f_{\alpha}(n) > f(n)$.

イロト イヨト イヨト イヨト 二日

If $f_{\alpha}(n) \leq^* f(n)$, then there may be finitely many *n* for which $f_{\alpha}(n) > f(n)$.

• For 1-dimensional examples (Dowker, Tanaka), this isn't a big deal.

(日) (四) (三) (三) (三)

If $f_{\alpha}(n) \leq^* f(n)$, then there may be finitely many *n* for which $f_{\alpha}(n) > f(n)$.

- For 1-dimensional examples (Dowker, Tanaka), this isn't a big deal.
- For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it's a problem.

ヘロト 人間ト 人団ト 人団ト

If $f_{\alpha}(n) \leq^* f(n)$, then there may be finitely many *n* for which $f_{\alpha}(n) > f(n)$.

- For 1-dimensional examples (Dowker, Tanaka), this isn't a big deal.
- For arbitrary CW complexes, where higher dimensional cells can glue on to those finitely many cells, it's a problem.

Solution

Hechler conditions!

The construction is actually by recursion on dimension on the Y side, and simultaneously, constructing f as the limit of a sequence of *Hechler conditions*, that is:

- finite initial segments of f, and
- promises to dominate some function F thereafter.

イロト 不得 トイヨト イヨト

Lemma 2 (Adding a Y-side cell, fitting X-side promises)

æ

イロン イヨン イヨン イヨン

Making it work

Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Let

- Y' be a finite subcomplex of Y containing y_0 ,
- $F \colon \mathbb{N} \to \mathbb{N}$ be a function,
- $i \in \mathbb{N}$,
- s be a function from the indices of Y' to \mathbb{N} such that $U(x_0; F) \times U(y_0; s) \subseteq X \times Y'$ has closure disjoint from H, and
- $Y'' = Y' \cup e_{\alpha}$ for some cell e_{α} of Y not in Y'.

イロト 不得 トイヨト イヨト

Lemma 2 (Adding a Y-side cell, fitting X-side promises)

Let

- Y' be a finite subcomplex of Y containing y_0 ,
- $F \colon \mathbb{N} \to \mathbb{N}$ be a function,
- $i \in \mathbb{N}$,
- s be a function from the indices of Y' to \mathbb{N} such that $U(x_0; F) \times U(y_0; s) \subseteq X \times Y'$ has closure disjoint from H, and
- $Y'' = Y' \cup e_{\alpha}$ for some cell e_{α} of Y not in Y'.

Then there is a function $f: \mathbb{N} \to \mathbb{N}$ such that

- $f(n) \ge F(n)$ for all n in \mathbb{N} , and f(n) = F(N) for all n < i,
- Of every $f': \mathbb{N} \to \mathbb{N}$ such that $f' ≥^* f$ and f' ≥ F, there is a $q \in \mathbb{N}$ such that $U(x_0; f') × U(y_0; s \cup \{(\alpha, q)\})$ has closure disjoint from H.

イロン イロン イヨン イヨン 三日

Proof of Lemma 2

For every finite tuple r of length n such that $r \ge F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.

イロト イボト イヨト イヨト

Proof of Lemma 2

For every finite tuple r of length n such that $r \ge F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.

By Lemma 1, we can then take $q_r \in \mathbb{N}$ such that $U(x_0; r) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Proof of Lemma 2

For every finite tuple r of length n such that $r \ge F \upharpoonright n$, $U(x_0; r) \subset U(x_0; F)$, so $U(x_0; r) \times U(y_0; s)$ certainly has closure disjoint from H.

By Lemma 1, we can then take $q_r \in \mathbb{N}$ such that $U(x_0; r) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.

Then by Lemma 1 again, there is $p \in \mathbb{N}$ such that $U(x_0; r \cup \{(n, p)\}) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.

・ロト ・回ト ・ヨト ・ヨト

Now, assuming by induction we have defined $f \upharpoonright n$ for some $n \ge i$, there are only finitely many r with $F \upharpoonright n \le r \le f \upharpoonright n$; follow this procedure for all of them, and take the maximum of the resulting values p to be f(n). Recursively do this for all $n \ge i$.

Then for any $f' \ge F$ with $f' \ge^* f$, $f' \ge r \cup (f \upharpoonright [n, \infty))$ for some $n \ge i$ and some r of length n as above, so

 $U(x_0; f' \upharpoonright n+1) \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H,

and in fact

 $U(x_0; f') \times U(y_0; s \cup \{(\alpha, q_r)\})$ has closure disjoint from H.

Lemma 2

Finishing the proof of the Theorem

With Lemma 2 in hand, the argument is now basically as outlined in the "First idea":

Proceed by induction on dimension on the Y side. Assume we have defined $f_k \colon \mathbb{N} \to \mathbb{N}$ and $g \upharpoonright Y^k$. For each (k + 1)-dimensional cell e_α on the Y side, use Lemma 2 with

- f_k as F,
- k as i,
- the minimal (finite) subcomplex of Y containing e_{α} and y_0 as Y", and
- $g \upharpoonright (Y'' \smallsetminus e_{\alpha})$ as s

to get $f_{\alpha,k+1}$. There are fewer than \mathfrak{b} many such $f_{\alpha,k+1}$, so take $f_{k+1} \ge f_k$ with $f_{k+1} \upharpoonright k = f_k \upharpoonright k$ eventually dominating all of them. Then take q as given by Lemma 2 (with f_{k+1} as f') as $g(\alpha)$.

Finally, take f to be the (componentwise) limit of the f_{k+1} ; these f and g are such that $U(x_0; f) \times U(y_0; g)$ has closure disjoint from H.