Preserving splitting families

Diego A. Mejía diego.mejia@shizuoka.ac.jp

Shizuoka University

Joint work with Martin Goldstern, Jakob Kellner, and Saharon Shelah

University of Vienna

May 28th, 2020

For $x, y \in [\omega]^{\aleph_0}$, x splits y iff $x \cap y$ and $y \setminus x$ are infinite.

-

For $x, y \in [\omega]^{\aleph_0}$, x splits y iff $x \cap y$ and $y \setminus x$ are infinite.

 $F \subseteq [\omega]^{\aleph_0}$ is a *splitting family* if

$$\forall y \in [\omega]^{\aleph_0} \exists x \in F(x \text{ splits } y).$$

For $x, y \in [\omega]^{\aleph_0}$, x splits y iff $x \cap y$ and $y \setminus x$ are infinite.

 $F \subseteq [\omega]^{\aleph_0}$ is a *splitting family* if

$$\forall y \in [\omega]^{\aleph_0} \exists x \in F(x \text{ splits } y).$$

The *splitting number* \mathfrak{s} is the smallest size of a splitting family.

Relational system

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where R is a relation.

- 《 市》

Relational system

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where R is a relation.

• $B \subseteq X$ is **R**-bounded if $\exists y \in Y \forall x \in B(xRy)$.

.∃ >

Relational system

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where R is a relation.

- $B \subseteq X$ is **R**-bounded if $\exists y \in Y \forall x \in B(xRy)$.
- **2** $D \subseteq Y$ is **R**-dominating if $\forall x \in X \exists y \in D(xRy)$.

Relational system

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where R is a relation.

- $B \subseteq X$ is **R**-bounded if $\exists y \in Y \forall x \in B(xRy)$.
- **2** $D \subseteq Y$ is **R**-dominating if $\forall x \in X \exists y \in D(xRy)$.
- $(\mathbf{R}) := \min\{|F| : F \subseteq X \text{ is } \mathbf{R}\text{-unbounded}\}.$

Relational system

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where R is a relation.

- $B \subseteq X$ is **R**-bounded if $\exists y \in Y \forall x \in B(xRy)$.
- **2** $D \subseteq Y$ is **R**-dominating if $\forall x \in X \exists y \in D(xRy)$.
- $(\mathbf{R}) := \min\{|F| : F \subseteq X \text{ is } \mathbf{R}\text{-unbounded}\}.$
- $\mathfrak{d}(\mathbf{R}) := \min\{|D| : D \subseteq Y \text{ is } \mathbf{R}\text{-dominating}\}.$

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where R is a relation.

- $B \subseteq X$ is **R**-bounded if $\exists y \in Y \forall x \in B(xRy)$.
- **2** $D \subseteq Y$ is **R**-dominating if $\forall x \in X \exists y \in D(xRy)$.
- $(\mathbf{R}) := \min\{|F| : F \subseteq X \text{ is } \mathbf{R}\text{-unbounded}\}.$
- $\mathfrak{d}(\mathbf{R}) := \min\{|D| : D \subseteq Y \text{ is } \mathbf{R}\text{-dominating}\}.$

Example

1
$$\mathbf{R} := \langle [\omega]^{\aleph_0}, [\omega]^{\aleph_0}, R \rangle$$
 where *xRy* iff *x* does not split *y*.

(日) (同) (三) (三)

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where R is a relation.

- $B \subseteq X$ is **R**-bounded if $\exists y \in Y \forall x \in B(xRy)$.
- **2** $D \subseteq Y$ is **R**-dominating if $\forall x \in X \exists y \in D(xRy)$.
- $(\mathbf{R}) := \min\{|F| : F \subseteq X \text{ is } \mathbf{R}\text{-unbounded}\}.$
- $\mathfrak{d}(\mathbf{R}) := \min\{|D| : D \subseteq Y \text{ is } \mathbf{R}\text{-dominating}\}.$

Example

Diego A. Mejía (Shizuoka University)

(日) (周) (三) (三)

A relational system is a triplet $\mathbf{R} = \langle X, Y, R \rangle$ where R is a relation.

- $B \subseteq X$ is **R**-bounded if $\exists y \in Y \forall x \in B(xRy)$.
- **2** $D \subseteq Y$ is **R**-dominating if $\forall x \in X \exists y \in D(xRy)$.
- $(\mathbf{R}) := \min\{|F| : F \subseteq X \text{ is } \mathbf{R}\text{-unbounded}\}.$
- $\mathfrak{d}(\mathbf{R}) := \min\{|D| : D \subseteq Y \text{ is } \mathbf{R}\text{-dominating}\}.$

Example

R := ⟨[ω]^{ℵ₀}, [ω]^{ℵ₀}, R⟩ where xRy iff x does not split y.
R_{sp} := ⟨2^ω, [ω]^{ℵ₀}, R_{sp}⟩ where xR_{sp}y iff x↾y is eventually constant.
Here b(R) = b(R_{sp}) = s and ∂(R) = ∂(R_{sp}) = t. (Actually R ≅_T R_{sp}).

(日) (周) (三) (三)

Hechler forcing preserves "splitting families" witnessing $\kappa \preceq_T \mathbf{R}_{sp}$ for any uncountable regular κ .

Hechler forcing preserves "splitting families" witnessing $\kappa \preceq_T \mathbf{R}_{sp}$ for any uncountable regular κ .

 $\kappa \preceq_{\mathrm{T}} \mathbf{R}_{\mathrm{sp}}$ iff

$$\exists f: \kappa \to 2^{\omega} \forall y \in [\omega]^{\aleph_0} \exists \beta_y < \kappa \forall \alpha < \kappa (f(\alpha) R_{\rm sp} y \Rightarrow \alpha \leq \beta_y).$$

Here, $\{f(\alpha) : \alpha < \kappa\}$ forms a "splitting family".

Hechler forcing preserves "splitting families" witnessing $\kappa \preceq_T \mathbf{R}_{sp}$ for any uncountable regular $\kappa.$

 $\kappa \preceq_{\mathrm{T}} \mathbf{R}_{\mathrm{sp}}$ iff

$$\exists f: \kappa \to 2^{\omega} \forall y \in [\omega]^{\aleph_0} \exists \beta_y < \kappa \forall \alpha < \kappa(f(\alpha) R_{\rm sp} y \Rightarrow \alpha \leq \beta_y).$$

Here, $\{f(\alpha) : \alpha < \kappa\}$ forms a "splitting family".

 $\kappa \preceq_{\mathrm{T}} \mathbf{R}_{\mathrm{sp}}$ implies $\mathfrak{s} \leq \kappa \leq \mathfrak{r}$.

Hechler forcing preserves "splitting families" witnessing $\kappa \preceq_T \mathbf{R}_{sp}$ for any uncountable regular $\kappa.$

 $\kappa \preceq_{\mathrm{T}} \mathbf{R}_{\mathrm{sp}}$ iff

$$\exists f: \kappa \to 2^{\omega} \forall y \in [\omega]^{\aleph_0} \exists \beta_y < \kappa \forall \alpha < \kappa(f(\alpha) R_{\rm sp} y \Rightarrow \alpha \leq \beta_y).$$

Here, $\{f(\alpha) : \alpha < \kappa\}$ forms a "splitting family".

 $\kappa \preceq_{\mathrm{T}} \mathbf{R}_{\mathrm{sp}}$ implies $\mathfrak{s} \leq \kappa \leq \mathfrak{r}$.

Judah & Shelah (1988)

Under CH, any FS (finite support) iteration of Suslin ccc posets forces that $[\omega]^{\aleph_0} \cap V$ is a splitting family.

Diego A. Mejía (Shizuoka University)

UniVie 2020 4 / 22

<ロト </p>

Objective

Force splitting families that can be preserved after a large class of FS iterations.

Objective

Force splitting families that can be preserved after a large class of FS iterations.

To force splitting families:

We use Hechler-type forcings of the form \mathbb{G}_{B} for some 2-labeled graph **B**.

2-graphs

Definition (2-graph)

A 2-labeled graph (2-graph) is a triplet $\mathbf{B} = \langle B, R_0, R_1 \rangle$ such that

- each $\langle B, R_i \rangle$ is a simple graph $(i \in \{0, 1\})$,

Good colorings

A coloring $\eta: B \to \{0, 1\}$ respects **B** if

 $\forall i \in \{0,1\} \forall a, b \in B(\text{if } aR_ib \text{ then } \{\eta(a), \eta(b)\} \neq \{i\}).$

Good colorings

A coloring $\eta: B \to \{0, 1\}$ respects **B** if

 $\forall i \in \{0,1\} \forall a, b \in B(\text{if } aR_ib \text{ then } \{\eta(a), \eta(b)\} \neq \{i\}).$

Good colorings

A coloring $\eta: B \to \{0, 1\}$ respects **B** if

 $\forall i \in \{0,1\} \forall a, b \in B(\text{if } aR_ib \text{ then } \{\eta(a), \eta(b)\} \neq \{i\}).$

2-graph without a good coloring

A 2-graph $\mathbf{B} = \langle B, R_0, R_1 \rangle$ is *suitable* if: • $|B| = \aleph_1$;

-

A 2-graph $\mathbf{B} = \langle B, R_0, R_1 \rangle$ is *suitable* if:

 $|B| = \aleph_1;$

2 For any $i \in \{0, 1\}$, *B* contains an R_i -clique of size \aleph_1 ;

A 2-graph $\mathbf{B} = \langle B, R_0, R_1 \rangle$ is *suitable* if:

- $\bullet |B| = \aleph_1;$
- **2** For any $i \in \{0, 1\}$, *B* contains an R_i -clique of size \aleph_1 ;
- So For any i ∈ {0,1} and a ∈ B, there is a coloring η : B → {0,1} that respects B such that η(a) = i;

A 2-graph $\mathbf{B} = \langle B, R_0, R_1 \rangle$ is *suitable* if:

- **2** For any $i \in \{0, 1\}$, *B* contains an R_i -clique of size \aleph_1 ;
- For any i ∈ {0,1} and a ∈ B, there is a coloring η : B → {0,1} that respects B such that η(a) = i;
- For any $a, b \in B$, there is an automorphism f on **B** such that f(a) = b.

A 2-graph $\mathbf{B} = \langle B, R_0, R_1 \rangle$ is *suitable* if:

- **2** For any $i \in \{0, 1\}$, *B* contains an R_i -clique of size \aleph_1 ;
- So For any i ∈ {0,1} and a ∈ B, there is a coloring η : B → {0,1} that respects B such that η(a) = i;
- For any $a, b \in B$, there is an automorphism f on **B** such that f(a) = b.

Remark

If **B** is suitable, then for any $a \in \mathbf{B}$ and $i \in \{0, 1\}$, there is some R_i -clique of size \aleph_1 containing a.

Theorem (Goldstern & Kellner & M. & Shelah (GKMS))

There exists a suitable 2-graph in ZFC.

The forcing $\mathbb{G}_{\textbf{B}}$

Let $\mathbf{B} = \langle B, R_0, R_1 \rangle$ be a 2-graph.

Definition (GKMS) Define the poset $\mathbb{G}_{\mathbf{B}}$:

The forcing $\mathbb{G}_{\textbf{B}}$

Let $\mathbf{B} = \langle B, R_0, R_1 \rangle$ be a 2-graph.

< E.

The forcing $\mathbb{G}_{\mathbf{B}}$

Let $\mathbf{B} = \langle B, R_0, R_1 \rangle$ be a 2-graph.

Definition (GKMS) Define the poset $\mathbb{G}_{\mathbf{B}}$: Conditions: n_{q} 0101100 n_{p} $p: F_p \times n_p \to \{0,1\}$ where $F_p \in [B]^{<\aleph_0}$ and $n_p < \omega$. • **Order:** $q \leq p$ iff $p \subseteq q$ and, for any $i \in n_q \setminus n_p$, the partial coloring 100000 F_{p} $q(\cdot, i): F_p \to \{0, 1\}$ respects Β.

R

 F_a

▲ # ↓ ★ ∃ ★

Properties of $\mathbb{G}_{\textbf{B}}$

Properties

If **B** is a suitable 2-graph then

< A

- ₹ 🗦 🕨

Properties of $\mathbb{G}_{\textbf{B}}$

Properties

- If **B** is a suitable 2-graph then
 - **1** $\mathbb{G}_{\mathbf{B}}$ is σ -centered.
 - **②** For $a \in B$, the generic real c_a added at a is Cohen over V.

Properties

- If **B** is a suitable 2-graph then
 - **1** $\mathbb{G}_{\mathbf{B}}$ is σ -centered.
 - **2** For $a \in B$, the generic real c_a added at a is Cohen over V.
 - **3** Any $p \in \mathbb{G}_{\mathbf{B}}$ forces that, for all $i \geq n_p$, the partial coloring

$$egin{array}{rll} {\sf F}_p & o & \{0,1\}\ a & \mapsto & c_a(i) \end{array}$$

respects **B**.

Properties

If **B** is a suitable 2-graph then

- **1** $\mathbb{G}_{\mathbf{B}}$ is σ -centered.
- **2** For $a \in B$, the generic real c_a added at a is Cohen over V.
- **3** Any $p \in \mathbb{G}_{\mathbf{B}}$ forces that, for all $i \geq n_p$, the partial coloring

$$egin{array}{rll} {\sf F}_p & o & \{0,1\}\ a & \mapsto & c_a(i) \end{array}$$

respects **B**.

Remark

For $A \subseteq B$, $\mathbb{G}_{\mathbf{B} \upharpoonright A}$ may not be a complete subposet of $\mathbb{G}_{\mathbf{B}}$.

Diego A. Mejía (Shizuoka University)

Consider an iteration with support of length $\pi \geq \pi_1 := \omega_1 \pi_0$ such that:
Consider an iteration with support of length $\pi \ge \pi_1 := \omega_1 \pi_0$ such that: • \mathbb{P}_{π_1} is the FS product of $\mathbb{G}_{\mathbf{B}_{\delta}}$ for $\delta < \pi_0$ where • each \mathbf{B}_{δ} is a suitable 2-graph with $B_{\delta} = [\omega_1 \delta, \omega_1(\delta + 1));$

Consider an iteration with support of length $\pi \geq \pi_1 := \omega_1 \pi_0$ such that:

- **1** \mathbb{P}_{π_1} is the FS product of $\mathbb{G}_{\mathbf{B}_{\delta}}$ for $\delta < \pi_0$ where
- **2** each \mathbf{B}_{δ} is a suitable 2-graph with $B_{\delta} = [\omega_1 \delta, \omega_1(\delta + 1));$
- **3** \mathbb{P}_{π} is obtained by a FS iteration of ccc posets $\langle \dot{\mathbb{Q}}_{\alpha} : \pi_1 \leq \alpha < \pi \rangle$ after \mathbb{P}_{π_1} .

() Any automorphism g on **B** induces a natural automorphism \hat{g} on \mathbb{G}_{B} .

- **()** Any automorphism g on **B** induces a natural automorphism \hat{g} on $\mathbb{G}_{\mathbf{B}}$.
- **2** A function $h : \pi_1 \to \pi_1$ is a *good automorphism* is each $h \upharpoonright B_{\delta}$ is an automorphism on \mathbf{B}_{δ} .

- **()** Any automorphism g on **B** induces a natural automorphism \hat{g} on $\mathbb{G}_{\mathbf{B}}$.
- **2** A function $h : \pi_1 \to \pi_1$ is a *good automorphism* is each $h \upharpoonright B_{\delta}$ is an automorphism on \mathbf{B}_{δ} .
- Any good automorphism $h: \pi_1 \to \pi_1$ induces a natural automorphism \hat{h}_{π_1} on \mathbb{P}_{π_1} .

- **()** Any automorphism g on **B** induces a natural automorphism \hat{g} on $\mathbb{G}_{\mathbf{B}}$.
- **2** A function $h : \pi_1 \to \pi_1$ is a *good automorphism* is each $h \upharpoonright B_{\delta}$ is an automorphism on \mathbf{B}_{δ} .
- Any good automorphism $h: \pi_1 \to \pi_1$ induces a natural automorphism \hat{h}_{π_1} on \mathbb{P}_{π_1} .
- For $\pi_1 \leq \alpha < \pi$, if \hat{h}_{α} is an automorphism on \mathbb{P}_{α} such that $\hat{h}_{\alpha}(\dot{\mathbb{Q}}_{\alpha}) = \dot{\mathbb{Q}}_{\alpha}$, then it can be naturally extended to an automorphism $\hat{h}_{\alpha+1}$ on $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$.

- **()** Any automorphism g on **B** induces a natural automorphism \hat{g} on $\mathbb{G}_{\mathbf{B}}$.
- **2** A function $h : \pi_1 \to \pi_1$ is a *good automorphism* is each $h \upharpoonright B_{\delta}$ is an automorphism on \mathbf{B}_{δ} .
- Any good automorphism $h: \pi_1 \to \pi_1$ induces a natural automorphism \hat{h}_{π_1} on \mathbb{P}_{π_1} .
- For $\pi_1 \leq \alpha < \pi$, if \hat{h}_{α} is an automorphism on \mathbb{P}_{α} such that $\hat{h}_{\alpha}(\dot{\mathbb{Q}}_{\alpha}) = \dot{\mathbb{Q}}_{\alpha}$, then it can be naturally extended to an automorphism $\hat{h}_{\alpha+1}$ on $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$.

• If $\pi_1 < \gamma \leq \pi$ is limit, $\langle \hat{h}_{\alpha} : \pi_1 \leq \alpha < \gamma \rangle$ is an increasing sequence and each \hat{h}_{α} is an automorphism on \mathbb{P}_{α} , then $\hat{h}_{\gamma} := \bigcup_{\alpha < \gamma} \hat{h}_{\alpha}$ is an automorphism on \mathbb{P}_{γ} .

• A good automorphism $h: \pi_1 \to \pi_1$ is compatible with \mathbb{P}_{π} if it induces an automorphism on \mathbb{P}_{π} by the previous steps,

• A good automorphism $h: \pi_1 \to \pi_1$ is compatible with \mathbb{P}_{π} if it induces an automorphism on \mathbb{P}_{π} by the previous steps, that is, $\hat{h}_{\alpha}(\dot{\mathbb{Q}}_{\alpha}) = \dot{\mathbb{Q}}_{\alpha}$ for all $\pi_1 \leq \alpha < \pi$.

- A good automorphism $h: \pi_1 \to \pi_1$ is compatible with \mathbb{P}_{π} if it induces an automorphism on \mathbb{P}_{π} by the previous steps, that is, $\hat{h}_{\alpha}(\dot{\mathbb{Q}}_{\alpha}) = \dot{\mathbb{Q}}_{\alpha}$ for all $\pi_1 \leq \alpha < \pi$.
- **2** \mathbb{P}_{π} is *appropriate* if every good automorphism is compatible with \mathbb{P}_{π} .

For any $p \in \mathbb{P}_{\alpha}$ and any \mathbb{P}_{α} -name τ , define $H(p), H(\tau) \subseteq \alpha$ by recursion on $\pi_1 \leq \alpha \leq \pi$:

For any $p \in \mathbb{P}_{\alpha}$ and any \mathbb{P}_{α} -name τ , define $H(p), H(\tau) \subseteq \alpha$ by recursion on $\pi_1 \leq \alpha \leq \pi$:

• $H(\tau) := \bigcup \{ H(\sigma) \cup H(p) : (\sigma, p) \in \tau \};$

For any $p \in \mathbb{P}_{\alpha}$ and any \mathbb{P}_{α} -name τ , define $H(p), H(\tau) \subseteq \alpha$ by recursion on $\pi_1 \leq \alpha \leq \pi$:

- $\$ when $\alpha = \pi_1$, $H(p) = \bigcup_{\delta < \pi_0} F_{p(\delta)}$ (finite);

For any $p \in \mathbb{P}_{\alpha}$ and any \mathbb{P}_{α} -name τ , define $H(p), H(\tau) \subseteq \alpha$ by recursion on $\pi_1 \leq \alpha \leq \pi$:

- $\$ when $\alpha = \pi_1$, $H(p) = \bigcup_{\delta < \pi_0} F_{p(\delta)}$ (finite);

 ${f 0}$ for ${\it p}\in {\Bbb P}_{lpha+1}$,

$$H(p) = \begin{cases} H(p \upharpoonright \alpha) & \text{if } \alpha \notin \operatorname{supp}(p), \\ H(p \upharpoonright \alpha) \cup H(p(\alpha)) \cup \{\alpha\} & \text{otherwise;} \end{cases}$$

For any $p \in \mathbb{P}_{\alpha}$ and any \mathbb{P}_{α} -name τ , define $H(p), H(\tau) \subseteq \alpha$ by recursion on $\pi_1 \leq \alpha \leq \pi$:

- $\$ when $\alpha = \pi_1$, $H(p) = \bigcup_{\delta < \pi_0} F_{p(\delta)}$ (finite);
- ${f 0}$ for $p\in {\Bbb P}_{lpha+1}$,

$$H(p) = \begin{cases} H(p \upharpoonright \alpha) & \text{if } \alpha \notin \operatorname{supp}(p), \\ H(p \upharpoonright \alpha) \cup H(p(\alpha)) \cup \{\alpha\} & \text{otherwise;} \end{cases}$$

• if γ is limit, H(p) is already defined for $p \in \mathbb{P}_{\gamma}$.

For any $p \in \mathbb{P}_{\alpha}$ and any \mathbb{P}_{α} -name τ , define $H(p), H(\tau) \subseteq \alpha$ by recursion on $\pi_1 \leq \alpha \leq \pi$:

- $\$ when $\alpha = \pi_1$, $H(p) = \bigcup_{\delta < \pi_0} F_{p(\delta)}$ (finite);
- ${f 0}$ for $p\in {\Bbb P}_{lpha+1}$,

$$H(p) = \begin{cases} H(p \upharpoonright \alpha) & \text{if } \alpha \notin \operatorname{supp}(p), \\ H(p \upharpoonright \alpha) \cup H(p(\alpha)) \cup \{\alpha\} & \text{otherwise;} \end{cases}$$

• if γ is limit, H(p) is already defined for $p \in \mathbb{P}_{\gamma}$.

Lemma

Assume that $h: \pi_1 \to \pi_1$ is a good automorphism compatible with \mathbb{P}_{π} . If τ is a \mathbb{P}_{π} -name and $h \upharpoonright (H(\tau) \cap \pi_1)$ is the identity, then $\hat{h}_{\pi}(\tau) = \tau$.

For any $p \in \mathbb{P}_{\alpha}$ and any \mathbb{P}_{α} -name τ , define $H(p), H(\tau) \subseteq \alpha$ by recursion on $\pi_1 \leq \alpha \leq \pi$:

- $\$ when $\alpha = \pi_1$, $H(p) = \bigcup_{\delta < \pi_0} F_{p(\delta)}$ (finite);
- ${f 0}$ for $p\in {\Bbb P}_{lpha+1}$,

$$H(p) = \begin{cases} H(p \upharpoonright \alpha) & \text{if } \alpha \notin \operatorname{supp}(p), \\ H(p \upharpoonright \alpha) \cup H(p(\alpha)) \cup \{\alpha\} & \text{otherwise;} \end{cases}$$

• if γ is limit, H(p) is already defined for $p \in \mathbb{P}_{\gamma}$.

Lemma

Assume that $h : \pi_1 \to \pi_1$ is a good automorphism compatible with \mathbb{P}_{π} . If τ is a \mathbb{P}_{π} -name and $h \upharpoonright (H(\tau) \cap \pi_1)$ is the identity, then $\hat{h}_{\pi}(\tau) = \tau$. Likewise for $p \in \mathbb{P}_{\pi}$.

Say that \mathbb{P}_{π} is λ -nice if, for any $p \in \mathbb{P}_{\pi}$,

 $|\{\delta < \pi_0 : H(p) \cap B_\delta \neq \emptyset\}| < \lambda.$

(신문) (문문

Say that \mathbb{P}_{π} is λ -*nice* if, for any $p \in \mathbb{P}_{\pi}$,

$$|\{\delta < \pi_0 : H(p) \cap B_\delta \neq \emptyset\}| < \lambda.$$

Theorem (GKMS)

Assume λ regular, $\omega_1 \leq \lambda \leq \pi_0$. If \mathbb{P}_{π} is λ -nice and appropriate then it forces $\lambda \leq_{\mathrm{T}} \mathbf{R}_{\mathrm{sp}}$ witnessed by the "splitting family" $\{c_{\omega_1\delta} : \delta < \lambda\}$.

$$\begin{array}{c} & & & & \dot{\mathbb{Q}}_{\pi_1} \\ \hline & & & & & \\ 0 & & & & \\ 0 & & & & \\ \omega_1 \delta & & & & \\ \omega_1 \delta & & & \\ \end{array}$$

イロト イポト イヨト イヨト

Assume some $p \in \mathbb{P}$ forces the contrary, so there is some \mathbb{P} -name $\dot{y} \in [\omega]^{\aleph_0}$ such that

$$p \Vdash |\{\delta < \lambda : c_{\omega_1 \delta} R_{\mathrm{sp}} \dot{y}\}| = \lambda.$$

Assume some $p \in \mathbb{P}$ forces the contrary, so there is some \mathbb{P} -name $\dot{y} \in [\omega]^{\aleph_0}$ such that

$$p \Vdash |\{\delta < \lambda : c_{\omega_1 \delta} R_{\mathrm{sp}} \dot{y}\}| = \lambda.$$

Find $F \in [\lambda]^{\lambda}$, $n_0 < \omega$, $e \in \{0, 1\}$ and $\{p_{\delta} : \delta \in F\}$ s.t.

 $p_{\delta} \leq p, \ \omega_1 \delta \in \operatorname{supp}(p_{\delta}), \ \text{and} \ p_{\delta} \Vdash c_{\omega_1 \delta} {\upharpoonright} (\dot{y} \smallsetminus n_0) = e.$

Assume some $p \in \mathbb{P}$ forces the contrary, so there is some \mathbb{P} -name $\dot{y} \in [\omega]^{\aleph_0}$ such that

$$p \Vdash |\{\delta < \lambda : c_{\omega_1\delta}R_{\rm sp}\dot{y}\}| = \lambda.$$

Find $F \in [\lambda]^{\lambda}$, $n_0 < \omega$, $e \in \{0, 1\}$ and $\{p_{\delta} : \delta \in F\}$ s.t.
 $p_{\delta} \le p, \ \omega_1\delta \in {\rm supp}(p_{\delta})$, and $p_{\delta} \Vdash c_{\omega_1\delta} \upharpoonright (\dot{y} \smallsetminus n_0) = e.$
Since \mathbb{P}_{π} is λ -nice,

$$\exists \delta_0 \in F(B_{\delta_0} \cap (H(p) \cup H(\dot{y})) = \emptyset).$$

Assume some $p \in \mathbb{P}$ forces the contrary, so there is some \mathbb{P} -name $\dot{y} \in [\omega]^{\aleph_0}$ such that

$$p \Vdash |\{\delta < \lambda : c_{\omega_1 \delta} R_{sp} \dot{y}\}| = \lambda.$$

Find $F \in [\lambda]^{\lambda}$, $n_0 < \omega$, $e \in \{0, 1\}$ and $\{p_{\delta} : \delta \in F\}$ s.t.
 $p_{\delta} \le p, \ \omega_1 \delta \in \operatorname{supp}(p_{\delta})$, and $p_{\delta} \Vdash c_{\omega_1 \delta} \upharpoonright (\dot{y} \smallsetminus n_0) = e.$
Since \mathbb{P}_{π} is λ -nice,

$$\exists \delta_0 \in F(B_{\delta_0} \cap (H(p) \cup H(\dot{y})) = \emptyset).$$

Set $a := \omega_1 \delta_0 \in B_{\delta_0}$, so there is an uncountable $R_{\delta_0,e}$ -clique $U \subseteq B_{\delta_0}$ with $a \in U$.

Assume some $p \in \mathbb{P}$ forces the contrary, so there is some \mathbb{P} -name $\dot{y} \in [\omega]^{\aleph_0}$ such that

$$p \Vdash |\{\delta < \lambda : c_{\omega_1 \delta} R_{\mathrm{sp}} \dot{y}\}| = \lambda.$$

Find $F \in [\lambda]^{\lambda}$, $n_0 < \omega$, $e \in \{0, 1\}$ and $\{p_{\delta} : \delta \in F\}$ s.t.
 $p_{\delta} \le p, \ \omega_1 \delta \in \mathrm{supp}(p_{\delta})$, and $p_{\delta} \Vdash c_{\omega_1 \delta} \upharpoonright (\dot{y} \smallsetminus n_0) = e.$

Since \mathbb{P}_{π} is λ -nice,

$$\exists \delta_0 \in F(B_{\delta_0} \cap (H(p) \cup H(\dot{y})) = \emptyset).$$

Set $a := \omega_1 \delta_0 \in B_{\delta_0}$, so there is an uncountable $R_{\delta_0,e}$ -clique $U \subseteq B_{\delta_0}$ with $a \in U$.

For $b \in U$ there is a good automorphism $h^b : \pi_1 \to \pi_1$ such that $h^b \upharpoonright (\pi_1 \smallsetminus B_{\delta_0})$ is the identity and $h^b(a) = b$.

By the Lemma, $\hat{h}^b_{\pi}(p) = p$ and $\hat{h}^b_{\pi}(\dot{y}) = \dot{y}$, so $p'_b := \hat{h}^b_{\pi}(p_{\delta_0}) \le p$, $\hat{h}^b_{\pi}(c_{\omega_1\delta_0}) = \hat{h}^b_{\pi}(c_a) = c_b$ and

 $p'_b \Vdash c_b \upharpoonright (\dot{y} \smallsetminus n_0) = e.$ (Note: $b \in \operatorname{supp}(p'_b)$)

By the Lemma, $\hat{h}_{\pi}^{b}(p) = p$ and $\hat{h}_{\pi}^{b}(\dot{y}) = \dot{y}$, so $p'_{b} := \hat{h}_{\pi}^{b}(p_{\delta_{0}}) \leq p$, $\hat{h}_{\pi}^{b}(c_{\omega_{1}\delta_{0}}) = \hat{h}_{\pi}^{b}(c_{a}) = c_{b}$ and

$$p'_b \Vdash c_b \upharpoonright (\dot{y} \smallsetminus n_0) = e.$$
 (Note: $b \in \operatorname{supp}(p'_b)$)

Since U is uncountable, by ccc there are $b \neq d \in U$ such that p'_b, p'_d are compatible, so some q extends them and

$$q \Vdash c_b \restriction (\dot{y} \smallsetminus n_0) = c_d \restriction (\dot{y} \smallsetminus n_0) = e.$$

By the Lemma, $\hat{h}_{\pi}^{b}(p) = p$ and $\hat{h}_{\pi}^{b}(\dot{y}) = \dot{y}$, so $p'_{b} := \hat{h}_{\pi}^{b}(p_{\delta_{0}}) \leq p$, $\hat{h}_{\pi}^{b}(c_{\omega_{1}\delta_{0}}) = \hat{h}_{\pi}^{b}(c_{a}) = c_{b}$ and

$$p'_b \Vdash c_b \upharpoonright (\dot{y} \smallsetminus n_0) = e.$$
 (Note: $b \in \operatorname{supp}(p'_b)$)

Since U is uncountable, by ccc there are $b \neq d \in U$ such that p'_b, p'_d are compatible, so some q extends them and

$$q \Vdash c_b \upharpoonright (\dot{y} \smallsetminus n_0) = c_d \upharpoonright (\dot{y} \smallsetminus n_0) = e.$$

Thus

$$q\Vdash ``c_b(k)=c_d(k)=e$$
 for all $k\in \dot{y}\smallsetminus \max\{n_0,n_{q(\delta_0)}\}``.$

By the Lemma, $\hat{h}_{\pi}^{b}(p) = p$ and $\hat{h}_{\pi}^{b}(\dot{y}) = \dot{y}$, so $p'_{b} := \hat{h}_{\pi}^{b}(p_{\delta_{0}}) \leq p$, $\hat{h}_{\pi}^{b}(c_{\omega_{1}\delta_{0}}) = \hat{h}_{\pi}^{b}(c_{a}) = c_{b}$ and

$$p'_b \Vdash c_b \upharpoonright (\dot{y} \smallsetminus n_0) = e.$$
 (Note: $b \in \operatorname{supp}(p'_b)$)

Since U is uncountable, by ccc there are $b \neq d \in U$ such that p'_b, p'_d are compatible, so some q extends them and

$$q \Vdash c_b \upharpoonright (\dot{y} \smallsetminus n_0) = c_d \upharpoonright (\dot{y} \smallsetminus n_0) = e.$$

Thus

$$q \Vdash ``c_b(k) = c_d(k) = e$$
 for all $k \in \dot{y} \smallsetminus \max\{n_0, n_{q(\delta_0)}\}$ ".

But $bR_{\delta_0,e}d$, which contradicts that q forces that

$$F_q \rightarrow \{0,1\}$$

 $u \mapsto c_u(k)$

respects \mathbf{B}_{δ_0} for all $k \geq n_{q(\delta_0)}$.

Assume GCH, $\lambda_1 \leq \ldots \leq \lambda_5$ are successor cardinals, and $\aleph_1 \leq \lambda_{\mathfrak{m}} \leq \lambda_{\mathfrak{s}} \leq \lambda_3$ are regular cardinals.

- < ≣ ≻ - <

Image: Image:

Assume GCH, $\lambda_1 \leq \ldots \leq \lambda_5$ are successor cardinals, and $\aleph_1 \leq \lambda_{\mathfrak{m}} \leq \lambda_{\mathfrak{s}} \leq \lambda_3$ are regular cardinals. Then there is some appropriate $\lambda_{\mathfrak{s}}$ -nice iteration forcing

$$\mathfrak{m}(ccc) = \aleph_1, \ \mathfrak{m}(Knaster) = \lambda_{\mathfrak{m}}, \ \mathfrak{p} = \mathfrak{s} = \lambda_{\mathfrak{s}},$$

add $(\mathcal{N}) = \lambda_1, \ \operatorname{cov}(\mathcal{N}) = \lambda_2, \ \mathfrak{b} = \lambda_3, \ \operatorname{non}(\mathcal{M}) = \lambda_4,$
$$\operatorname{cov}(\mathcal{M}) = \mathfrak{c} = \lambda_5.$$

★ Ξ →

Assume GCH, $\lambda_1 \leq \ldots \leq \lambda_5$ are successor cardinals, and $\aleph_1 \leq \lambda_{\mathfrak{m}} \leq \lambda_{\mathfrak{s}} \leq \lambda_3$ are regular cardinals. Then there is some appropriate $\lambda_{\mathfrak{s}}$ -nice iteration forcing

$$\mathfrak{m}(ccc) = \aleph_1, \ \mathfrak{m}(Knaster) = \lambda_{\mathfrak{m}}, \ \mathfrak{p} = \mathfrak{s} = \lambda_{\mathfrak{s}},$$

add $(\mathcal{N}) = \lambda_1, \ \operatorname{cov}(\mathcal{N}) = \lambda_2, \ \mathfrak{b} = \lambda_3, \ \operatorname{non}(\mathcal{M}) = \lambda_4,$
$$\operatorname{cov}(\mathcal{M}) = \mathfrak{c} = \lambda_5.$$

$\textit{Precedent: [GMS16]} {\rightarrow} [GKS19] {\rightarrow} [GKMS20]$

Diego A. Mejía (Shizuoka University)

→ Ξ →

Assume GCH, $\aleph_1 \leq \mu_0 \leq \mu_p \leq \mu_0 \leq \mu_1 \leq \ldots \leq \mu_8$ are regular, $\mu_9 \geq \mu_8$ with $cof(\mu_9) \geq \mu_0$, $\mu_i \leq \mu_s \leq \mu_{i+1}$ regular (for some $0 \leq i \leq 2$), and $\mu_{8-i} \leq \mu_r \leq \mu_{9-i}$ regular.

イロト イポト イヨト イヨト

Assume GCH, $\aleph_1 \leq \mu_0 \leq \mu_p \leq \mu_0 \leq \mu_1 \leq \ldots \leq \mu_8$ are regular, $\mu_9 \geq \mu_8$ with $cof(\mu_9) \geq \mu_0$, $\mu_i \leq \mu_s \leq \mu_{i+1}$ regular (for some $0 \leq i \leq 2$), and $\mu_{8-i} \leq \mu_r \leq \mu_{9-i}$ regular. Then there is some cofinality preserving poset forcing

$$\mathfrak{m}(ccc) = \aleph_1, \ \mathfrak{m}(Knaster) = \lambda_{\mathfrak{m}}, \ \mathfrak{p} = \lambda_{\mathfrak{p}}, \ \mathfrak{h} = \mathfrak{g} = \mu_0, \ \mathfrak{s} = \mu_{\mathfrak{s}}, \ \mathfrak{r} = \mu_{\mathfrak{r}}$$

add $(\mathcal{N}) = \mu_1, \ \operatorname{cov}(\mathcal{N}) = \mu_2, \ \mathfrak{b} = \mu_3, \ \operatorname{non}(\mathcal{M}) = \mu_4,$
$$\operatorname{cov}(\mathcal{M}) = \mu_5, \ \mathfrak{d} = \mu_6, \ \operatorname{non}(\mathcal{N}) = \mu_7, \operatorname{cof}(\mathcal{N}) = \mu_8, \mathfrak{c} = \mu_9.$$

Assume GCH, $\aleph_1 \leq \mu_0 \leq \mu_p \leq \mu_0 \leq \mu_1 \leq \ldots \leq \mu_8$ are regular, $\mu_9 \geq \mu_8$ with $cof(\mu_9) \geq \mu_0$, $\mu_i \leq \mu_s \leq \mu_{i+1}$ regular (for some $0 \leq i \leq 2$), and $\mu_{8-i} \leq \mu_r \leq \mu_{9-i}$ regular. Then there is some cofinality preserving poset forcing

$$\begin{split} \mathfrak{m}(\textit{ccc}) &= \aleph_1, \ \mathfrak{m}(\textit{Knaster}) = \lambda_{\mathfrak{m}}, \ \mathfrak{p} = \lambda_{\mathfrak{p}}, \ \mathfrak{h} = \mathfrak{g} = \mu_0, \ \mathfrak{s} = \mu_{\mathfrak{s}}, \ \mathfrak{r} = \mu_{\mathfrak{r}} \\ & \mathrm{add}(\mathcal{N}) = \mu_1, \ \mathrm{cov}(\mathcal{N}) = \mu_2, \ \mathfrak{b} = \mu_3, \ \mathrm{non}(\mathcal{M}) = \mu_4, \\ & \mathrm{cov}(\mathcal{M}) = \mu_5, \ \mathfrak{d} = \mu_6, \ \mathrm{non}(\mathcal{N}) = \mu_7, \mathrm{cof}(\mathcal{N}) = \mu_8, \mathfrak{c} = \mu_9. \end{split}$$

[Kellner & Latif & Tonti 18] \rightarrow [GKS19] \rightarrow [GKMS20] \times 2

Assume GCH, $\aleph_1 \leq \mu_0 \leq \mu_p \leq \mu_0 \leq \mu_1 \leq \ldots \leq \mu_8$ are regular, $\mu_9 \geq \mu_8$ with $cof(\mu_9) \geq \mu_0$, $\mu_i \leq \mu_s \leq \mu_{i+1}$ regular (for some $0 \leq i \leq 1$), and $\mu_{8-i} \leq \mu_r \leq \mu_{9-i}$ regular. Then there is some cofinality preserving poset forcing

$$\begin{split} \mathfrak{m}(\textit{ccc}) &= \aleph_1, \ \mathfrak{m}(\textit{Knaster}) = \lambda_{\mathfrak{m}}, \ \mathfrak{p} = \lambda_{\mathfrak{p}}, \ \mathfrak{h} = \mathfrak{g} = \mu_0, \ \mathfrak{s} = \mu_{\mathfrak{s}}, \ \mathfrak{r} = \mu_{\mathfrak{r}} \\ & \mathrm{add}(\mathcal{N}) = \mu_1, \ \mathfrak{b} = \mu_2, \ \mathrm{cov}(\mathcal{N}) = \mu_3, \ \mathrm{non}(\mathcal{M}) = \mu_4, \\ & \mathrm{cov}(\mathcal{M}) = \mu_5, \ \mathrm{non}(\mathcal{N}) = \mu_6, \ \mathfrak{d} = \mu_7, \mathrm{cof}(\mathcal{N}) = \mu_8, \mathfrak{c} = \mu_9. \end{split}$$

[Kellner & Latif & Shelah 19] \rightarrow [GKMS20] \times 2

Diego A. Mejía (Shizuoka University)

In our models, $\mathfrak{s} \leq \mathfrak{b}$ and $\mathfrak{d} \leq \mathfrak{r}$.

э

・ロト ・回ト ・ヨト
In our models, $\mathfrak{s} \leq \mathfrak{b}$ and $\mathfrak{d} \leq \mathfrak{r}$.

Question

Is it consistent with ZFC that $\mathfrak{b} < \mathfrak{s} < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$?

< A

3 ×

In our models, $\mathfrak{s} \leq \mathfrak{b}$ and $\mathfrak{d} \leq \mathfrak{r}$.

Question

Is it consistent with ZFC that $\mathfrak{b} < \mathfrak{s} < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$?

Question

Can we modify our applications to force $\mathfrak{m}(\mathsf{ccc}) > \aleph_1$?

→ Ξ →