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The problem

Given

M nonstandard model of arithmetic.

R new binary relation symbol.

Goal

expansion (M,RM) such that

(a) RM does something prohibitive

e.g. RM is a bijection from [n+ 1] onto [n] for some n ∈M

(b) much of arithmetic is preserved

i.e. (M,RM) satisfies LNP for a large class of formulas



Results

(M,RM) with RM a bijection from [n+ 1] onto [n]

Paris, Wilkie 1985

. . . and LNP for existential formulas.

Riis 1994

. . . and LNP for ∃∆b0
0 (R) any b0 < no(1).

∆b0
0 (R): formulas in language with R, only b0-bounded quantifiers ∃x<b0, ∀x<b0
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we are not satisfied with current methods of proving independence
results. The main reason is that, except for Gödel’s theorem which
gives only special formulas, no general method is known to prove
independence of Π1 sentences. Pudlák 1996



Some comments on Ajtai’s proof

Ajtai’s argument is

“done according to the general ideas of Cohen’s method of forcing”
(Ajtai)

“mostly combinatorial or probabilistic”
(Ajtai)

“similar to the terminology of forcing but we actually do not use any
result from it”
(Ajtai)

“extremely diffcult to understand and explain”
(Ben-Sasson, Harsha)

“[the start of] contemporary research in lower bounds for proposi-
tional proofs”
(Kraj́ıček)



Set theoretic forcing

M a countable transitive model of ZFC, (P,≤) ∈M

with generic filter G ⊆ P associate M [G]

Principal Theorem M [G] |= ZFC.

Forcing (semantic)

p  ϕ iff for every generic filter G with p ∈ G: M [G] |= ϕ.

forcing language: ∈ plus constants M .

Extension if q ≤ p  ϕ, then q  ϕ.

Stability if p  ¬¬ϕ, then p  ϕ.

Truth M [G] |= ϕ iff p  ϕ for some p ∈ G.

Definability  is in a certain sense definable in M .



Set theoretic forcing

Definability for every ϕ(x̄) the set
{
pā | p  ϕ(ā)

}
is definable in M .

Forcing (syntactic) by universal recurrence:

p  ∀xϕ(x) ⇐⇒ ∀a ∈M : p  ϕ(a)
p  (ϕ ∧ ψ) ⇐⇒ p  ϕ & p  ψ

p  ¬ϕ ⇐⇒ ∀q ≤ p : q 6 ϕ

p  atom ⇐⇒ ?

Forcing Completeness

The syntactic and semantic definitions of forcing are equivalent.
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Want bijection RM from [n+ 1] onto [n] such that

(M,RM) |= LNP for existential formulas.

“forcing frame”: finite partial bijections from [n+ 1] onto [n] undefinable

construct ∅ = p0 ⊆ p1 ⊆ · · · ⊆ RM :=
⋃
i pi

choice of p2i: some q ⊇ p2i−1 that has

– “ith” element of [n+ 1] in domain,

– “ith” element of [n] in range
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choice of p2i+1:

• let ϕ(x) be the ith existential LPA(M) ∪ {R}-formula

• choose M-minimal b such that

(M,RM) |= ϕ(b) for some bijection RM ⊇ p2i

⇐⇒

some q ⊇ p2i forces ϕ(b)

i.e. (M,RM) |= ϕ(b) for all bijections RM ⊇ q.

• set p2i+1 := such a q

Need
{
b ∈M | some extension of p2i forces ϕ(b)

}
is definable in M .

p is compatible with ϕ(b)
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M a countable L-structure

(P,≤, D0, D1, . . .) countable forcing frame

Forcing language L∗ ⊇ L plus constants M

Forcing syntactic definition via universal recurrence

p  atom⇐⇒ ?

• Extension: if q ≤ p  atom, then q  atom.

• Stability: if p  ¬¬ atom, then p  atom.

Lemma Extension and Stability hold for all ϕ.

conservative p  L(M)-atom ⇐⇒ M |= L(M)-atom.



Forcing in general: genericity

Want intersect many dense subsets P .

e.g. in set theory: all dense sets from M

e.g. Feferman, Robinson. . . : all sets of the form [ϕ] ∪ [¬ϕ] where
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e.g. in set theory: all dense sets from M

e.g. Feferman, Robinson. . . : all sets of the form [ϕ] ∪ [¬ϕ] where

[ϕ] := {p | p  ϕ}.
Need e.g.

⋂
a∈M

⋃
b∈M [ϕ(a, b)].

The Stern formalism (Stern 1975, Knight 1973).

Two sorted structure (P,M):

• first sort carries (P,≤, D0, D1, . . .)

• second sort carries L-structure M

• for every L∗-atom ϕ(x1, . . . , xr) add relation symbol

of sort P ×M r denoting {pā | p  ϕ(ā)}

generic: intersect all dense sets definable in (P,M).
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Given G ⊆ P generic filter.

Want M [G] |= Th(G) := {ϕ | ∃p ∈ G : p  ϕ}.

Need Th(G) respects equality axioms

for all closed terms t there is a ∈M such that t = a ∈ Th(G)

Then M [G] is defined and

M [G] := Henkin term model of Th(G)

is the generic associate of G.

• Truth

• Forcing Completeness assuming M [G] is defined for every generic G.

• if  is conservative, then M [G] is an expansion of M

(identifying a ∈M with its term congruence class)
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Principal Theorems

M countable ordered L-structure

M satisfies LNP

 conservative universal forcing

Compatibility: p‖ϕ iff ∃q ≤ p : q  ϕ iff p 6 ¬ϕ.

 is definable for ϕ(x̄) iff

∀p ∈ P : {ā | p‖ϕ(ā)} is M-definable.

 is densely definable for ϕ(x̄) up to b0 iff

∀p ∈ P∃r ≤ p : {ā< b0 | r‖ϕ(ā)} is M-definable.

Principal Theorem

If  is densely definable for all ϕ ∈ Φ up to b0,

then every generic expansion of M satisfies LNP Φ up to b0.



Paris Wilkie forcing

M nonstandard model of true arithmetic, n ∈M \ N,

L∗ := L ∪ {R}.

P := finite partial bijections from [n+ 1] onto [n] coded in M .

D0, D1, . . . enumerate {p | a ∈ dom(p)}, {p | b ∈ im(p)} for a ∈ [n+ 1], b ∈ [n].

Set p  Rst⇐⇒ (sM , tM) ∈ p

This determines a universal conservative forcing.

M [G] ∼= (M,
⋃
G) violates PHP for every generic G.

Suffices to show:  is definable for existential L∗(M)-formulas.
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The method of definable antichains

X maximal antichain in [ϕ]. Then p‖ϕ⇐⇒ ∃q ∈ X : p‖q.

How to get a maximal antichain in [¬ϕ] from one in [ϕ]?

A refines X iff for every p ∈ A
∃q ∈ X : p‖q ⇐⇒ ∃q ∈ X : p ≤ q.

Write A ↓ X := {p ∈ A | ∃q ∈ X : p ≤ q}.
Antichain Lemma

X maximal ac in [ϕ],

A maximal ac refining X,

then A \ (A ↓ X) maximal ac in [¬ϕ].

Xa maximal ac in [¬ϕ(a)] for every a < b0,

A maximal ac refining
⋃
a<b0

Xa,

then A \ (A ↓
⋃
a<b0

Xa) maximal ac in [∀x < b0ϕ(x)].
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M nonstandard model of true arithmetic, b0 < 2n
o(1)

Ajtai’s Theorem

There is a bijection RM from [n+ 1] onto [n] st. (M,RM) |= LNP ∆b0
0 (R).

P (n) := partial bijections from [n+ 1] onto [n] coded in M .

P :=
⋃
`∈N
{
p ∈ P (n) |M |= Card(p) < n− n1/`

}
.

Suffices to show:  is densely definable for ∆b0
0 (R) up to b0

i.e. for every b0-bounded ϕ(x)

∀p ∈ P ∃r ≤ p : {ā < b0 | r‖ϕ(ā)} is M-definable.

Find in M a sequence (Xā)ā<b0
of maximal ac in [ϕ(ā)]↓ r

Construct such a sequence by recursion on ϕ.
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Finite combinatorics: Switching Lemma

Given (Xā)ā<b0
find r and (Aā)ā<b0

in M such that:

Aā maximal ac in P↓ r, refines Xā∪r :=
{
p∪r | r‖p ∈ Xā

}
Switching Lemma

X0, . . . , XN−1 ⊆ P (m), elements of Xi have card ≤ k, ` < m

For some r ∈ P (m) of card ≤ m− ` there are A0, . . . , AN−1:

• Ai ⊆ P (n)↓ r is an ac refining Xi∪r

• elements of Ai have card ≤ 2k larger than r

• Ai is 2k-predense below r

(every q ≤ r of card ≤ m−2k is compatible with some p ∈ Ai)

provided that
(m− `)k

(`+ 1)4k · k3k
> N .


