Forcing against bounded arithmetic

Moritz Müller

joint with Albert Atserias

The problem

Given

M nonstandard model of arithmetic.

R new binary relation symbol.

Goal

expansion (M, R^M) such that

(a) R^M does something prohibitive

e.g. R^M is a bijection from [n + 1] onto [n] for some $n \in M$

(b) much of arithmetic is preserved

i.e. (M, R^M) satisfies LNP for a large class of formulas

Results

 (M, R^M) with R^M a bijection from [n + 1] onto [n]

Paris, Wilkie 1985

... and LNP for existential formulas.

Riis 1994

... and LNP for
$$\exists \Delta_0^{b_0}(R)$$
 any $b_0 < n^{o(1)}$.

 $\Delta_0^{b_0}(R)$: formulas in language with R, only b_0 -bounded quantifiers $\exists x < b_0, \forall x < b_0$

Results

 (M, R^M) with R^M a bijection from [n + 1] onto [n]

Paris, Wilkie 1985

... and LNP for existential formulas.

Riis 1994

...and LNP for $\exists \Delta_0^{b_0}(R)$ any $b_0 < n^{o(1)}$.

 $\Delta_0^{b_0}(R)$: formulas in language with R, only b_0 -bounded quantifiers $\exists x < b_0, \forall x < b_0$

Ajtai 1988

... and LNP for $\Delta_0^{b_0}(R)$ up to b_0 for some $b_0 \ge n^{\omega(1)}$.

Results

 (M, R^M) with R^M a bijection from [n + 1] onto [n]

Paris, Wilkie 1985

... and LNP for existential formulas.

Riis 1994

... and LNP for $\exists \Delta_0^{b_0}(R)$ any $b_0 < n^{o(1)}$.

 $\Delta_0^{b_0}(R)$: formulas in language with R, only b_0 -bounded quantifiers $\exists x < b_0, \forall x < b_0$

Ajtai 1988

... and LNP for $\Delta_0^{b_0}(R)$ up to b_0 for some $b_0 \ge n^{\omega(1)}$. Beame, Impagliazzo, Krajíček, Pitassi, Pudlák, Woods 1992 ... and LNP for $\Delta_0^{b_0}(R)$ up to b_0 for any $b_0 < 2^{n^{o(1)}}$.

Some background on these results

Riis 1994

 $T_2^1(R) \not\vdash \forall x \mathsf{PHP}(R, x).$

Ajtai 1988

 $I\Delta_0(R) \not\vdash \forall x PHP(R, x).$

Beame, Impagliazzo, Krajíček, Pitassi, Pudlák, Woods 1992 $T_2(R) \not\vdash \forall x PHP(R, x).$

Some background on these results

Riis 1994

 $T_2^1(R) \not\vdash \forall x \mathsf{PHP}(R, x).$

Ajtai 1988

 $I\Delta_0(R) \not\vdash \forall x PHP(R, x).$

In fact, bounded depth Frege proofs of PHP have size $n^{\omega(1)}$.

Beame, Impagliazzo, Krajíček, Pitassi, Pudlák, Woods 1992 $T_2(R) \not\vdash \forall x PHP(R, x).$

In fact, bounded depth Frege proofs of PHP have size $2^{n^{\Omega(1)}}$.

Some background on these results

Riis 1994 $T_2^1(R) \not\vdash \forall x PHP(R, x).$

Ajtai 1988 $I\Delta_0(R) \not\vdash \forall x PHP(R, x).$ In fact, bounded depth Frege proofs of PHP have size $n^{\omega(1)}$.

Beame, Impagliazzo, Krajíček, Pitassi, Pudlák, Woods 1992 $T_2(R) \not\vdash \forall x PHP(R, x).$

In fact, bounded depth Frege proofs of PHP have size $2^{n^{\Omega(1)}}$.

we are not satisfied with current methods of proving independence results. The main reason is that, except for Gödel's theorem which gives only special formulas, no general method is known to prove independence of Π_1 sentences. Pudlák 1996

Some comments on Ajtai's proof

Ajtai's argument is

"done according to the general ideas of Cohen's method of forcing" (Ajtai)

"mostly combinatorial or probabilistic" (Ajtai)

"similar to the terminology of forcing but we actually do not use any result from it" (Ajtai)

"extremely diffcult to understand and explain" (Ben-Sasson, Harsha)

"[the start of] contemporary research in lower bounds for propositional proofs" (Krajíček)

Set theoretic forcing

M a countable transitive model of ZFC, $(P, \leq) \in M$ with generic filter $G \subseteq P$ associate M[G]

Principal Theorem $M[G] \models \mathsf{ZFC}$.

Forcing (semantic)

 $p \Vdash \varphi$ iff for every generic filter G with $p \in G$: $M[G] \models \varphi$.

forcing language: \in plus constants M.

Extension if $q \leq p \Vdash \varphi$, then $q \Vdash \varphi$.

Stability if $p \Vdash \neg \neg \varphi$, then $p \Vdash \varphi$.

Truth $M[G] \models \varphi$ iff $p \Vdash \varphi$ for some $p \in G$.

Definability \Vdash is in a certain sense definable in M.

Set theoretic forcing

Definability for every $\varphi(\bar{x})$ the set $\{p\bar{a} \mid p \Vdash \varphi(\bar{a})\}$ is definable in M. **Forcing (syntactic)** by universal recurrence:

$$\begin{array}{rcl} p \Vdash \forall x \varphi(x) & \Longleftrightarrow & \forall a \in M : p \Vdash \varphi(a) \\ p \Vdash (\varphi \land \psi) & \Longleftrightarrow & p \Vdash \varphi \And p \Vdash \psi \\ & p \Vdash \neg \varphi & \Longleftrightarrow & \forall q \leq p : q \not \vdash \varphi \\ & p \Vdash \operatorname{atom} & \Longleftrightarrow & ? \end{array}$$

Forcing Completeness

The syntactic and semantic definitions of forcing are equivalent.

Given M countable model of arithmetic, $n \in M \setminus \mathbb{N}$. Want bijection R^M from [n + 1] onto [n] such that $(M, R^M) \models \text{LNP}$ for existential formulas.

Given M countable model of arithmetic, $n \in M \setminus \mathbb{N}$. Want bijection R^M from [n + 1] onto [n] such that $(M, R^M) \models \text{LNP}$ for existential formulas.

"forcing frame": finite partial bijections from [n + 1] onto [n]construct $\emptyset = p_0 \subseteq p_1 \subseteq \cdots \subseteq R^M := \bigcup_i p_i$

Given M countable model of arithmetic, $n \in M \setminus \mathbb{N}$. Want bijection R^M from [n + 1] onto [n] such that $(M, R^M) \models \text{LNP}$ for existential formulas.

"forcing frame": finite partial bijections from [n + 1] onto [n] undefinable construct $\emptyset = p_0 \subseteq p_1 \subseteq \cdots \subseteq R^M := \bigcup_i p_i$

Given M countable model of arithmetic, $n \in M \setminus \mathbb{N}$. Want bijection R^M from [n + 1] onto [n] such that $(M, R^M) \models \text{LNP}$ for existential formulas.

"forcing frame": finite partial bijections from [n + 1] onto [n] undefinable construct $\emptyset = p_0 \subseteq p_1 \subseteq \cdots \subseteq R^M := \bigcup_i p_i$

choice of p_{2i} : some $q \supseteq p_{2i-1}$ that has

- "*i*th" element of [n + 1] in domain,
- "*i*th" element of [n] in range

choice of p_{2i+1} :

- let $\varphi(x)$ be the *i*th existential $L_{\mathsf{PA}}(M) \cup \{R\}$ -formula
- choose M-minimal b such that

 $(M, R^M) \models \varphi(b)$ for some bijection $R^M \supseteq p_{2i}$

choice of p_{2i+1} :

- let $\varphi(x)$ be the *i*th existential $L_{\mathsf{PA}}(M) \cup \{R\}$ -formula
- \bullet choose M-minimal b such that

 $(M, R^M) \models \varphi(b)$ for some bijection $R^M \supseteq p_{2i}$

some $q \supseteq p_{2i}$ forces $\varphi(b)$

i.e. $(M, R^M) \models \varphi(b)$ for all bijections $R^M \supseteq q$.

• set $p_{2i+1} :=$ such a q

choice of p_{2i+1} :

- let $\varphi(x)$ be the *i*th existential $L_{\mathsf{PA}}(M) \cup \{R\}$ -formula
- choose M-minimal b such that

 $(M, R^M) \models \varphi(b)$ for some bijection $R^M \supseteq p_{2i}$

some $q \supseteq p_{2i}$ forces $\varphi(b)$

i.e. $(M, R^M) \models \varphi(b)$ for all bijections $R^M \supseteq q$.

• set $p_{2i+1} :=$ such a q

Need $\{ b \in M \mid \text{ some extension of } p_{2i} \text{ forces } \varphi(b) \}$ is definable in M.

choice of p_{2i+1} :

- let $\varphi(x)$ be the *i*th existential $L_{\mathsf{PA}}(M) \cup \{R\}$ -formula
- choose M-minimal b such that

 $(M, R^M) \models \varphi(b)$ for some bijection $R^M \supseteq p_{2i}$

some $q \supseteq p_{2i}$ forces $\varphi(b)$

i.e. $(M, R^M) \models \varphi(b)$ for all bijections $R^M \supseteq q$.

• set $p_{2i+1} :=$ such a q

Need $\{b \in M \mid \text{ some extension of } p_{2i} \text{ forces } \varphi(b) \}$ is definable in M. $p \text{ is compatible with } \varphi(b)$

M a countable L-structure $(P, \leq, D_0, D_1, \ldots)$ countable forcing frame Forcing language $L^* \supseteq L$ plus constants M

Forcing syntactic definition via universal recurrence

 $p \Vdash \mathsf{atom} \iff \mathbf{?}$

M a countable L-structure $(P, \leq, D_0, D_1, \ldots)$ countable forcing frame Forcing language $L^* \supseteq L$ plus constants M

Forcing syntactic definition via universal recurrence

 $p \Vdash \mathsf{atom} \iff \mathbf{?}$

- Extension: if $q \leq p \Vdash$ atom, then $q \Vdash$ atom.
- Stability: if $p \Vdash \neg \neg$ atom, then $p \Vdash$ atom.

M a countable L-structure $(P, \leq, D_0, D_1, \ldots)$ countable forcing frame Forcing language $L^* \supseteq L$ plus constants M

Forcing syntactic definition via universal recurrence

 $p \Vdash \text{atom} \iff ?$

- Extension: if $q \leq p \Vdash$ atom, then $q \Vdash$ atom.
- Stability: if $p \Vdash \neg \neg$ atom, then $p \Vdash$ atom.

Lemma Extension and Stability hold for all φ .

M a countable L-structure

 $(P, \leq, D_0, D_1, \ldots)$ countable forcing frame

Forcing language $L^* \supseteq L$ plus constants M

Forcing syntactic definition via universal recurrence

 $p \Vdash \text{atom} \iff ?$

- Extension: if $q \leq p \Vdash$ atom, then $q \Vdash$ atom.
- Stability: if $p \Vdash \neg \neg$ atom, then $p \Vdash$ atom.

Lemma Extension and Stability hold for all φ .

conservative $p \Vdash L(M)$ -atom $\iff M \models L(M)$ -atom.

Forcing in general: genericity

Want intersect many dense subsets P.

e.g. in set theory: all dense sets from ${\cal M}$

e.g. Feferman, Robinson...: all sets of the form $[\varphi] \cup [\neg \varphi]$ where

 $[\varphi] := \{p \mid p \Vdash \varphi\}.$

Need e.g. $\bigcap_{a \in M} \bigcup_{b \in M} [\varphi(a, b)].$

Forcing in general: genericity

Want intersect many dense subsets P.

- e.g. in set theory: all dense sets from M
- e.g. Feferman, Robinson...: all sets of the form $[\varphi] \cup [\neg \varphi]$ where

$$[\varphi] := \{p \mid p \Vdash \varphi\}.$$

Need e.g. $\bigcap_{a \in M} \bigcup_{b \in M} [\varphi(a, b)].$

The Stern formalism (Stern 1975, Knight 1973).

Two sorted structure (P, M):

- first sort carries $(P, \leq, D_0, D_1, \ldots)$
- second sort carries L-structure M
- for every L^* -atom $\varphi(x_1, \ldots, x_r)$ add relation symbol of sort $P \times M^r$ denoting $\{p\bar{a} \mid p \Vdash \varphi(\bar{a})\}$

generic: intersect all dense sets definable in (P, M).

Forcing in general: generic associates

- **Given** $G \subseteq P$ generic filter.
- Want $M[G] \models \mathsf{Th}(G) := \{ \varphi \mid \exists p \in G : p \Vdash \varphi \}.$
- **Need** Th(G) respects equality axioms

for all closed terms t there is $a \in M$ such that $t = a \in \mathsf{Th}(G)$

Forcing in general: generic associates

Given $G \subseteq P$ generic filter.

Want $M[G] \models \mathsf{Th}(G) := \{ \varphi \mid \exists p \in G : p \Vdash \varphi \}.$

Need Th(G) respects equality axioms

for all closed terms t there is $a \in M$ such that $t = a \in \mathsf{Th}(G)$

Then M[G] is defined and

M[G] := Henkin term model of Th(G)

is the generic associate of G.

Forcing in general: generic associates

Given $G \subseteq P$ generic filter.

Want $M[G] \models \mathsf{Th}(G) := \{ \varphi \mid \exists p \in G : p \Vdash \varphi \}.$

Need Th(G) respects equality axioms

for all closed terms t there is $a \in M$ such that $t = a \in \mathsf{Th}(G)$

Then M[G] is defined and

M[G] := Henkin term model of Th(G)

is the generic associate of G.

- Truth
- Forcing Completeness assuming M[G] is defined for every generic G.
- if \Vdash is conservative, then M[G] is an expansion of M

(identifying $a \in M$ with its term congruence class)

- ${\cal M}$ countable ordered ${\it L}\mbox{-}{\it structure}$
- \boldsymbol{M} satisfies LNP
- \Vdash conservative universal forcing

- ${\cal M}$ countable ordered $L\mbox{-structure}$
- ${\cal M}$ satisfies ${\sf LNP}$
- \Vdash conservative universal forcing

Compatibility: $p \| \varphi \text{ iff } \exists q \leq p : q \Vdash \varphi \text{ iff } p \not\Vdash \neg \varphi.$

- M countable ordered L-structure
- M satisfies LNP
- \Vdash conservative universal forcing

Compatibility: $p \parallel \varphi$ iff $\exists q \leq p : q \Vdash \varphi$ iff $p \not\models \neg \varphi$.

- \Vdash is definable for $\varphi(\bar{x})$ iff
 - $\forall p \in P : \{ \overline{a} \mid p \| \varphi(\overline{a}) \}$ is *M*-definable.
- $⊢ is densely definable for φ(\bar{x}) up to b₀ iff$ $∀p ∈ P∃r ≤ p : {<math>\bar{a} < b_0 | r || φ(\bar{a})$ } is *M*-definable.

- ${\cal M}$ countable ordered ${\it L}\mbox{-}{\it structure}$
- M satisfies LNP
- ⊩ conservative universal forcing

Compatibility: $p \| \varphi \text{ iff } \exists q \leq p : q \Vdash \varphi \text{ iff } p \not\Vdash \neg \varphi.$

- \Vdash is definable for $\varphi(\bar{x})$ iff ∀*p* ∈ *P* : { $\bar{a} | p || \varphi(\bar{a})$ } is *M*-definable.
- \Vdash is densely definable for $\varphi(\bar{x})$ up to b_0 iff ∀ $p \in P \exists r \leq p$: { $\bar{a} < b_0 \mid r \parallel \varphi(\bar{a})$ } is *M*-definable.

Principal Theorem

If \Vdash is densely definable for all $\varphi \in \Phi$ up to b_0 ,

then every generic expansion of M satisfies LNP Φ up to b_0 .

Paris Wilkie forcing

M nonstandard model of true arithmetic, $n \in M \setminus \mathbb{N}$, $L^* := L \cup \{R\}.$

P := finite partial bijections from [n + 1] onto [n] coded in M.

 D_0, D_1, \ldots enumerate $\{p \mid a \in \mathsf{dom}(p)\}, \{p \mid b \in \mathsf{im}(p)\}\$ for $a \in [n+1], b \in [n]$.

Set $p \Vdash Rst \iff (s^M, t^M) \in p$

This determines a universal conservative forcing.

 $M[G] \cong (M, \bigcup G)$ violates PHP for every generic G.

Suffices to show: \Vdash is definable for existential $L^*(M)$ -formulas.

X maximal antichain in $[\varphi]$. Then $p \| \varphi \iff \exists q \in X : p \| q$.

How to get a maximal antichain in $[\neg \varphi]$ from one in $[\varphi]$?

X maximal antichain in $[\varphi]$. Then $p \| \varphi \iff \exists q \in X : p \| q$.

How to get a maximal antichain in $[\neg \varphi]$ from one in $[\varphi]$? A refines X iff for every $p \in A$

 $\exists q \in X : p \| q \quad \iff \quad \exists q \in X : p \le q.$

Write $A \downarrow X := \{ p \in A \mid \exists q \in X : p \leq q \}.$

X maximal antichain in $[\varphi]$. Then $p \| \varphi \iff \exists q \in X : p \| q$.

How to get a maximal antichain in $[\neg \varphi]$ from one in $[\varphi]$? A refines X iff for every $p \in A$

$$\exists q \in X : p \| q \quad \iff \quad \exists q \in X : p \le q.$$

Write $A \downarrow X := \{ p \in A \mid \exists q \in X : p \leq q \}.$

Antichain Lemma

X maximal ac in $[\varphi]$, A maximal ac refining X, then $A \setminus (A \downarrow X)$ maximal ac in $[\neg \varphi]$.

X maximal antichain in $[\varphi]$. Then $p \| \varphi \iff \exists q \in X : p \| q$.

How to get a maximal antichain in $[\neg \varphi]$ from one in $[\varphi]$? A refines X iff for every $p \in A$

 $\exists q \in X : p \| q \quad \Longleftrightarrow \quad \exists q \in X : p \leq q.$

Write $A \downarrow X := \{ p \in A \mid \exists q \in X : p \leq q \}.$

Antichain Lemma

X maximal ac in $[\varphi]$, A maximal ac refining X, then $A \setminus (A \downarrow X)$ maximal ac in $[\neg \varphi]$.

 X_a maximal ac in $[\neg \varphi(a)]$ for every $a < b_0$, A maximal ac refining $\bigcup_{a < b_0} X_a$, then $A \setminus (A \downarrow \bigcup_{a < b_0} X_a)$ maximal ac in $[\forall x < b_0 \varphi(x)]$.

M nonstandard model of true arithmetic, $b_0 < 2^{n^{o(1)}}$

Ajtai's Theorem

There is a bijection R^M from [n + 1] onto [n] st. $(M, R^M) \models LNP \Delta_0^{b_0}(R)$.

M nonstandard model of true arithmetic, $b_0 < 2^{n^{o(1)}}$

Ajtai's Theorem

There is a bijection R^M from [n + 1] onto [n] st. $(M, R^M) \models \text{LNP } \Delta_0^{b_0}(R)$.

P(n) := partial bijections from [n + 1] onto [n] coded in M.

 $P := \bigcup_{\ell \in \mathbb{N}} \left\{ p \in P(n) \mid M \models Card(p) < n - n^{1/\ell} \right\}.$

M nonstandard model of true arithmetic, $b_0 < 2^{n^{o(1)}}$

Ajtai's Theorem

There is a bijection R^M from [n + 1] onto [n] st. $(M, R^M) \models LNP \Delta_0^{b_0}(R)$.

P(n) := partial bijections from [n + 1] onto [n] coded in M.

$$P := \bigcup_{\ell \in \mathbb{N}} \left\{ p \in P(n) \mid M \models Card(p) < n - n^{1/\ell} \right\}.$$

Suffices to show: \Vdash is densely definable for $\Delta_0^{b_0}(R)$ up to b_0

i.e. for every b_0 -bounded $\varphi(x)$

 $\forall p \in P \ \exists r \leq p : \{\overline{a} < b_0 \mid r \| \varphi(\overline{a})\} \text{ is } M \text{-definable.}$

M nonstandard model of true arithmetic, $b_0 < 2^{n^{o(1)}}$

Ajtai's Theorem

There is a bijection R^M from [n + 1] onto [n] st. $(M, R^M) \models \text{LNP } \Delta_0^{b_0}(R)$.

$$P(n) := \text{ partial bijections from } [n+1] \text{ onto } [n] \text{ coded in } M$$
$$P := \bigcup_{\ell \in \mathbb{N}} \left\{ p \in P(n) \mid M \models Card(p) < n - n^{1/\ell} \right\}.$$

Suffices to show: \Vdash is densely definable for $\Delta_0^{b_0}(R)$ up to b_0

i.e. for every b_0 -bounded $\varphi(x)$

 $\forall p \in P \exists r \leq p : \{\overline{a} < b_0 \mid r \| \varphi(\overline{a})\}$ is *M*-definable.

Find in M a sequence $(X_{\bar{a}})_{\bar{a} < b_0}$ of maximal ac in $[\varphi(\bar{a})] \downarrow r$ Construct such a sequence by recursion on φ .

Finite combinatorics: Switching Lemma

Given $(X_{\overline{a}})_{\overline{a} < b_0}$ find r and $(A_{\overline{a}})_{\overline{a} < b_0}$ in M such that:

 $A_{\overline{a}}$ maximal ac in $P \downarrow r$, refines $X_{\overline{a}} \cup r := \{ p \cup r \mid r || p \in X_{\overline{a}} \}$

Finite combinatorics: Switching Lemma

Given $(X_{\bar{a}})_{\bar{a} < b_0}$ find r and $(A_{\bar{a}})_{\bar{a} < b_0}$ in M such that:

 $A_{\bar{a}}$ maximal ac in $P \downarrow r$, refines $X_{\bar{a}} \cup r := \{ p \cup r \mid r || p \in X_{\bar{a}} \}$

Switching Lemma

 $X_0, \ldots, X_{N-1} \subseteq P(m)$, elements of X_i have card $\leq k$, $\ell < m$

For some $r \in P(m)$ of card $\leq m - \ell$ there are A_0, \ldots, A_{N-1} :

- $A_i \subseteq P(n) \downarrow r$ is an ac refining $X_i \cup r$
- elements of A_i have card $\leq 2k$ larger than r
- A_i is 2k-predense below r

(every $q \leq r$ of card $\leq m-2k$ is compatible with some $p \in A_i$)

provided that $\frac{(m-\ell)^k}{(\ell+1)^{4k} \cdot k^{3k}} > N.$