Symbiosis and Upwards Reflection

Yurii Khomskii

with Lorenzo Galeotti and Jouko Väänänen

Research Seminar, University of Vienna, 24 October 2019

Supported by the EU Horizon 2020 programme under the Marie Skłodowska-Curie grant No 706219 (REGPROP)

Yurii Khomskii (UHH & AUC)

Symbiosis and Upwards Reflection

Э

Theorem (Löwenheim-Skolem)

If $\mathcal{A} \models \phi$ then there is a countable $\mathcal{B} \models \phi$.

Э

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Theorem (Löwenheim-Skolem)

If $\mathcal{A} \models \phi$ then there is a countable $\mathcal{B} \models \phi$.

Proof.

Let \mathcal{H}_{θ} be sufficiently large, containing \mathcal{A} , and $\mathcal{H}_{\theta} \models (\mathcal{A} \models \phi)$. Let $M \prec \mathcal{H}_{\theta}$ be a countable elementary submodel with $\mathcal{A} \in M$. Let $\pi : M \cong \overline{M}$ be the transitive collapse and $\mathcal{B} = \pi(\mathcal{A})$. Since \overline{M} is countable and transitive, \mathcal{B} is countable. By elementarity $M \models (\mathcal{A} \models \phi)$, so $\overline{M} \models (\mathcal{B} \models \phi)$. But " $\mathcal{B} \models \phi$ " is Δ_1 , so by absoluteness $\mathcal{B} \models \phi$. \Box

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

Is this (only) a joke?

Ξ

《曰》 《圖》 《臣》 《臣》

Is this (only) a joke?

Notice that we only used that " $\mathcal{A} \models \phi$ " is Δ_1 . In fact Σ_1 would have been sufficient.

Theorem

Let \mathcal{L} be any logic extending FOL, such that " $\mathcal{A} \models_{\mathcal{L}} \phi$ " is Σ_1 . Then the (downward) Löwenheim-Skolem Theorem holds for \mathcal{L} .

Remark: For most interesting extensions \mathcal{L} of FOL, the satisfaction relation is not Σ_1 . But if our set theory satisfies a **stronger reflection principle** then the same argument can work.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ●

Logicians have two ways to describe a class of structures:

- **definining** in set theory: $\{\mathcal{A} \mid \Phi(\mathcal{A})\}$
- axiomatizing by logic: $\{\mathcal{A} \mid \mathcal{A} \models \phi\}$

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

Logicians have two ways to describe a class of structures:

- **defining** in set theory: $\{\mathcal{A} \mid \Phi(\mathcal{A})\}$
- axiomatizing by logic: $\{\mathcal{A} \mid \mathcal{A} \models \phi\}$

Example 1

Describe the class of all structures with 3 or more elements.

Logicians have two ways to describe a class of structures:

- **defining** in set theory: $\{\mathcal{A} \mid \Phi(\mathcal{A})\}$
- axiomatizing by logic: $\{\mathcal{A} \mid \mathcal{A} \models \phi\}$

Example 1

Describe the class of all structures with 3 or more elements.

- In set theory: $\{\mathcal{A} \mid \Phi(\mathcal{A})\}$, where $\Phi(x)$ is " $|x| \ge 3$ "
- In logic: $\{\mathcal{A} \mid \mathcal{A} \models \phi\}$ where ϕ is

$$\exists x_1 x_2 x_3 (x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3)$$

Note: Φ can be Δ_0

Yurii Khomskii (UHH & AUC)

Model Theory vs. Set Theory

Example 2

Describe the class of infinite structures.

Э

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Example 2

Describe the class of infinite structures.

- In set theory: $\{\mathcal{A} \mid \Phi(\mathcal{A})\}$, where $\Phi(x)$ is " $|\omega| \leq A$ ".
- Impossible in $\mathcal{L}_{\omega\omega}$. But using $\mathcal{L}_{\omega_1\omega_1}$, \mathcal{A} is infinite iff $\mathcal{A} \models \phi$, where

$$\phi \equiv \exists x_0, x_1, \cdots \bigwedge_{i \neq j} x_i \neq x_j$$

Alternatively, we can add a generalized quantifier Q_∞ saying "there are infinitely many". Then A is infinite iff A ⊨ Q_∞x(x = x)

Note: Φ can be Δ_1

Yurii Khomskii (UHH & AUC)

Model Theory vs. Set Theory

Example 3

Describe the class of structures $(\mathcal{A}, \mathcal{P})$ such that

 $|\{x \in A \mid P(x)\}| = |\{x \in A \mid \neg P(x)\}|$

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

Model Theory vs. Set Theory

Example 3

Describe the class of structures $(\mathcal{A}, \mathcal{P})$ such that

$$|\{x \in A \mid P(x)\}| = |\{x \in A \mid \neg P(x)\}|$$

- In set theory: $\{A \mid \Phi(A)\}$, where $\Phi(x)$ is as above.
- In $\mathcal{L}_{\omega\omega}$ impossible. In $\mathcal{L}_{\omega_1\omega_1}$ or $\mathcal{L}_{\omega\omega}(Q_{\infty})$ also impossible. But we can add the so-called **Härtig quantifier** I defined by

 $\mathcal{A} \models \mathsf{lxy} \ \phi(\mathsf{x})\psi(\mathsf{y}) \ :\Leftrightarrow \ |\{\mathsf{a} \in \mathsf{A} \ : \ \mathcal{A} \models \phi[\mathsf{a}]\}| = |\{\mathsf{b} \in \mathsf{A} \ : \ \mathcal{A} \models \psi[\mathsf{b}]\}|$

Then this model class is axiomatizable by $\phi \equiv \text{``Ixy}P(x)\neg P(x)$ '' in the logic $\mathcal{L}_{\omega\omega}(I)$.

Note: Φ can be Δ_2 but not Δ_1 (cardinalities are not absolute).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ●

Set Theory vs. Logic: who is stronger?

Question

Who is stronger: set theory $\{\mathcal{A} \mid \Phi(\mathcal{A})\}$ or logic $\{\mathcal{A} \mid \mathcal{A} \models \phi\}$?

 \equiv

Who is stronger: set theory $\{A \mid \Phi(A)\}$ or logic $\{A \mid A \models \phi\}$?

This is an uneven competition—so let's give logic more power, and give set theory a handicap—consider only Φ of limited complexity.

Who is stronger: set theory $\{A \mid \Phi(A)\}$ or logic $\{A \mid A \models \phi\}$?

This is an uneven competition—so let's give logic more power, and give set theory a handicap—consider only Φ of limited complexity.

1 Since the satisfaction relation for $\mathcal{L}_{\omega\omega}$ is Δ_1 , any $\mathcal{L}_{\omega\omega}$ model class $Mod(\phi)$ is Δ_1 .

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

Who is stronger: set theory $\{\mathcal{A} \mid \Phi(\mathcal{A})\}$ or logic $\{\mathcal{A} \mid \mathcal{A} \models \phi\}$?

This is an uneven competition—so let's give logic more power, and give set theory a handicap—consider only Φ of limited complexity.

- 1 Since the satisfaction relation for $\mathcal{L}_{\omega\omega}$ is Δ_1 , any $\mathcal{L}_{\omega\omega}$ model class $Mod(\phi)$ is Δ_1 .
- 2 But not vice versa, e.g., $\{A \mid A \text{ is infinite}\}$.

Who is stronger: set theory $\{\mathcal{A} \mid \Phi(\mathcal{A})\}$ or logic $\{\mathcal{A} \mid \mathcal{A} \models \phi\}$?

This is an uneven competition—so let's give logic more power, and give set theory a handicap—consider only Φ of limited complexity.

- **1** Since the satisfaction relation for $\mathcal{L}_{\omega\omega}$ is Δ_1 , any $\mathcal{L}_{\omega\omega}$ model class $Mod(\phi)$ is Δ_1 .
- 2 But not vice versa, e.g., $\{A \mid A \text{ is infinite}\}$.
- 3 One can show that every Δ₁ class (if closed under isomorphisms), is axiomatizable by the logic Δ(L_{ωω}(I)).

Who is stronger: set theory $\{A \mid \Phi(A)\}$ or logic $\{A \mid A \models \phi\}$?

This is an uneven competition—so let's give logic more power, and give set theory a handicap—consider only Φ of limited complexity.

- **1** Since the satisfaction relation for $\mathcal{L}_{\omega\omega}$ is Δ_1 , any $\mathcal{L}_{\omega\omega}$ model class $Mod(\phi)$ is Δ_1 .
- 2 But not vice versa, e.g., $\{A \mid A \text{ is infinite}\}$.
- 3 One can show that every Δ₁ class (if closed under isomorphisms), is axiomatizable by the logic Δ(L_{ωω}(I)).
- **4** But not vice versa, e.g., $|\{x \in A \mid P(x)\}| = |\{x \in A \mid \neg P(x)\}|$ is $\Delta(\mathcal{L}_{\omega\omega}(I))$ -axiomatizable but not Δ_1 .

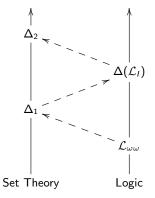
Who is stronger: set theory $\{A \mid \Phi(A)\}$ or logic $\{A \mid A \models \phi\}$?

This is an uneven competition—so let's give logic more power, and give set theory a handicap—consider only Φ of limited complexity.

- **1** Since the satisfaction relation for $\mathcal{L}_{\omega\omega}$ is Δ_1 , any $\mathcal{L}_{\omega\omega}$ model class $Mod(\phi)$ is Δ_1 .
- 2 But not vice versa, e.g., $\{A \mid A \text{ is infinite}\}$.
- 3 One can show that every Δ₁ class (if closed under isomorphisms), is axiomatizable by the logic Δ(L_{ωω}(I)).
- ④ But not vice versa, e.g., $|\{x \in A | P(x)\}| = |\{x \in A | ¬P(x)\}|$ is $\Delta(\mathcal{L}_{\omega\omega}(I))$ -axiomatizable but not Δ_1 .
- 5 It is Δ_2 , but that's again too strong ...

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Set theoretic vs. logical strength



3

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

In his PhD Dissertation (1977), Väänänen introduced the concept **Symbiosis**, aiming to find an **exact ballance of power** between set-theoretic and model-theoretic strength.

It turns out that the interesting cases take place **between** Δ_1 and Δ_2 If *R* is a set-theoretic predicate, focus on $\Delta_1(R)$ -classes, for a fixed Σ_1 or Π_1 predicate *R*.

<ロト < 同ト < ヨト < ヨト -

$\Delta_1(R)$ -classes

Definition

Let *R* be a fixed set-theoretic predicate. Then a formula ϕ is $\Sigma_1(R)$ if it is Σ_1 in the extended language of set theory with the *R*-predicate. The same holds for $\Pi_1(R)$ and $\Delta_1(R)$.

Example:

- 1) $Cd(x) \leftrightarrow x$ is a cardinal.
- 2 $Rg(x) \leftrightarrow x$ is a regular cardinal'.
- 3 $PwSt(x,y) \leftrightarrow y = \mathcal{P}(x).$

For instance "x is uncountable" can be expressed in a $\Sigma_1(Cd)$ way:

$$\exists \alpha \exists f (Cd(\alpha) \land \alpha \neq \omega \land f : \alpha \hookrightarrow x)$$

If R is Π_1 or Σ_1 then $\Delta_1(R) \subseteq \Delta_2$.

The complexity of $\models_{\mathcal{L}}$

Using this notion, we can compute the set-theoretic power of $\models_{\mathcal{L}}$ more accurately.

Lemma

 $\models_{\mathcal{L}_{\omega\omega}(\mathsf{I})}$ is $\Delta_1(\mathit{Cd})$

Proof.

Call a model *M* of set theory *Cd*-correct if $M \models Cd(\alpha)$ iff $Cd(\alpha)$. Then " $\mathcal{A} \models_{\mathcal{L}_{\omega\omega}(I)} \phi$ " is absolute between models of set theory which are *Cd*-correct. Thus

$$\mathcal{A} \models_{\mathcal{L}_{\omega\omega}(\mathsf{I})} \phi$$
 if

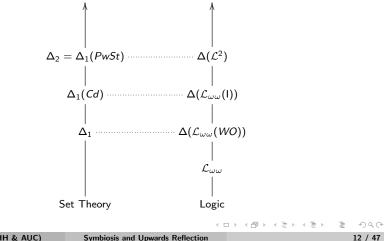
 $\exists M(M \text{ trans.} \land M \models \mathsf{ZFC}^* \land \mathcal{A} \in M \land \forall \alpha (M \models \mathsf{Cd}(\alpha) \leftrightarrow \mathsf{Cd}(\alpha)) \land M \models (\mathcal{A} \models_{\mathcal{L}_{\omega\omega}(\mathfrak{l})} \phi))$

iff

 $\forall M(M \text{ trans.} \land M \models \mathsf{ZFC}^* \land \mathcal{A} \in M \land \forall \alpha (M \models \mathsf{Cd}(\alpha) \leftrightarrow \mathsf{Cd}(\alpha)) \rightarrow M \models (\mathcal{A} \models_{\mathcal{L}_{\omega\omega}(\mathsf{I})} \phi))$

This gives a $\Sigma_1(Cd)$ and a $\Pi_1(Cd)$ definition.

By **Symbiosis**, we want to capture the idea that \mathcal{L} has **the same** expressive power as $\Delta_1(R)$, for some Π_1 predicate R.



Yurii Khomskii (UHH & AUC)

Applications:

- Large Cardinal strength of principles of L (such as Löwenheim-Skolem and Compactness)
- 2 Relating properties of L to set-theoretic reflection principles for Σ₁(R)- and Δ₁(R)- classes
- 3 Large Cardinal strength of reflection principles
- ④ Probably more ...

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

```
Definition (Väänänen)

\mathcal{L} and R are symbiotic if

(1) \models_{\mathcal{L}} is \Delta_1(R),

(2) ... ?
```

What should ... say?

Э

Definition (Väänänen)

${\mathcal L}$ and ${\mathcal R}$ are ${\bf symbiotic}$ if

```
1 \models_{\mathcal{L}} is \Delta_1(R), equiv: for every \mathcal{L}-sentence \phi, Mod(\phi) is \Delta_1(R).

2 ... ?
```

What should ... say?

ŀ

 $\rightarrow \rightarrow \equiv \rightarrow$

Definition (Väänänen)

\mathcal{L} and R are **symbiotic** if

```
1 \models_{\mathcal{L}} is \Delta_1(R), equiv: for every \mathcal{L}-sentence \phi, Mod(\phi) is \Delta_1(R).
2 ... ?
```

What should ... say? First attempt: "every $\Delta_1(R)$ -class of τ -structures is of the form $Mod(\phi)$ ".

Image: A matrix and a matrix

Definition (Väänänen)

\mathcal{L} and R are **symbiotic** if

```
1) \models_{\mathcal{L}} is \Delta_1(R), equiv: for every \mathcal{L}-sentence \phi, Mod(\phi) is \Delta_1(R).
2) ... ?
```

What should ... say? First attempt: "every $\Delta_1(R)$ -class of τ -structures is of the form $Mod(\phi)$ ".

What if the class is not closed under isomorphisms?

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Definition (Väänänen)

 ${\mathcal L}$ and ${\mathcal R}$ are ${\bf symbiotic}$ if

1
$$\models_{\mathcal{L}}$$
 is $\Delta_1(R)$, equiv: for every \mathcal{L} -sentence ϕ , $Mod(\phi)$ is $\Delta_1(R)$.

2 ... ?

What should ... say? First attempt: "every $\Delta_1(R)$ class of τ -structures is of the form $Mod(\phi)$ ".

ŀ

<ロト < 同ト < ヨト < ヨト -

Definition (Väänänen)

\mathcal{L} and R are **symbiotic** if

1 $\models_{\mathcal{L}}$ is $\Delta_1(R)$, equiv: for every \mathcal{L} -sentence ϕ , $Mod(\phi)$ is $\Delta_1(R)$. **2** ... ?

What should ... say? First attempt: "every $\Delta_1(R)$ -class of τ -structures is of the form $Mod(\phi)$ ".

Second attempt: "every $\Delta_1(R)$ -class of τ -structures closed under isomorphisms is of the form $Mod(\phi)$ ".

Definition (Väänänen)

 \mathcal{L} and R are **symbiotic** if

1 $\models_{\mathcal{L}}$ is $\Delta_1(R)$, equiv: for every \mathcal{L} -sentence ϕ , $Mod(\phi)$ is $\Delta_1(R)$. 2 ... ?

What should ... say? First attempt: "every $\Delta_1(R)$ class of τ -structures is of the form $Mod(\phi)$ ".

Second attempt: "every $\Delta_1(R)$ -class of τ -structures closed under isomorphisms is of the form $Mod(\phi)$ ".

Unfortunately, this is still too much to ask in general.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

Definition (Väänänen)

```
\mathcal L and R are symbiotic if
```

```
1 \models_{\mathcal{L}} is \Delta_1(R), equiv: for every \mathcal{L}-sentence \phi, Mod(\phi) is \Delta_1(R).
2 ... ?
```

What should ... say? First attempt: "every $\Delta_1(R)$ class of τ -structures is of the form $Mod(\phi)$ ".

Second attempt: "every $\Delta_1(R)$ -class of τ -structures closed under isomorphisms is of the form $Mod(\phi)$ ".

Unfortunately, this is still too much to ask in general.

Symbiosis only works for strong logics of a special form: $\Delta(\mathcal{L})$

イロト 不得下 イヨト イヨト 三日

Definition

Let $\tau \subseteq \tau'$ be many-sorted vocabularies. If \mathcal{A} is a τ' -structure, then the τ -reduct $\mathcal{A} \upharpoonright \tau$ is defined by ignoring all symbols not in τ' and restricting the domain to the sorts in τ .

Definition

A class \mathcal{K} of τ -structures is $\Sigma(\mathcal{L})$ -axiomatizable if $\mathcal{K} = \{\mathcal{A} | \tau : \mathcal{A} \models_{\mathcal{L}} \phi\}$ for some ϕ in an extended language τ' . A class \mathcal{K} is $\Delta(\mathcal{L})$ -axiomatizable if both \mathcal{K} and its complement are $\Sigma(\mathcal{L})$ -axiomatizable. The Δ -operation has many applications in abstract model theory.

- **1** It is convenient to regard $\Delta(\mathcal{L})$ itself as an **abstract logic**.
- 2 $\Delta(\mathcal{L}_{\omega\omega}) = \mathcal{L}_{\omega\omega}$
- **3** If \mathcal{L} satisfies **Craig interpolation** then $\Delta(\mathcal{L}) = \mathcal{L}$.
- ④ The Δ-operation preserves many properties of the logic *L*, in particular downward Löwenheim-Skolem theorems.

Definition (Väänänen)

\mathcal{L} and R are **symbiotic** if

- 1 $\models_{\mathcal{L}}$ is $\Delta_1(R)$, and
- 2 Every $\Delta_1(R)$ -class closed under isomorphisms is $\Delta(\mathcal{L})$ -axiomatizable.

<ロト < 同ト < ヨト < ヨト -

Definition (Väänänen)

\mathcal{L} and R are **symbiotic** if

1 $\models_{\mathcal{L}}$ is $\Delta_1(R)$, and

2 Every $\Delta_1(R)$ -class closed under isomorphisms is $\Delta(\mathcal{L})$ -axiomatizable.

Theorem (Bagaria & Väänänen)

- **1** $\mathcal{L}_{\omega\omega}(I)$ and Cd are symbiotic.
- **2** \mathcal{L}^2 and PwSt are symbiotic.

3 ... and many others.

The class \mathbb{Q}_R

Definition (Väänänen)

- ${\mathcal L}$ and ${\mathcal R}$ are ${\bf symbiotic}$ if
 - **1** $\models_{\mathcal{L}}$ is $\Delta_1(R)$, and
 - 2 Every $\Delta_1(R)$ -class closed under isomorphisms is $\Delta(\mathcal{L})$ -axiomatizable.

Instead of (2), we can consider a special case which is easier to both prove and apply.

Definition

For a predicate R, let \mathbb{Q}_R be the class of **all** R-correct ZFC*-models closed under isomorphisms, i.e.,

 $\mathbb{Q}_R = \{(N, E) \mid (N, E) \cong (M, \in) \text{ for some } R \text{-correct model } (M, \in) \models \mathsf{ZFC}^*\}$

Э

イロト イポト イヨト イヨト

Lemma

The following conditions (of Symbiosis) are equivalent:

- 2 Every $\Delta_1(R)$ -class closed under isomorphisms is $\Delta(\mathcal{L})$ -axiomatizable.
- **2**^{*} \mathbb{Q}_R is $\Delta(\mathcal{L})$ -axiomatizable.

Proof.

```
\mathbf{2}^* \Rightarrow \mathbf{2}:
```

```
(N, E) \in \mathbb{Q}_R iff
```

```
\exists M ((M, \in) \cong (N, E) \land (M, \in) \models \mathsf{ZFC}^* \land \forall x \in M ((M \models R(x)) \leftrightarrow R(x)))
```

iff

```
E wellfounded & extensional \land \forall M
((M, \in) \cong (N, E) \land M transitive \rightarrow (M, \in) \models ZFC* \land \forall x \in M ((M \models R(x)) \leftrightarrow R(x)))
```

Therefore \mathbb{Q}_R is $\Delta_1(R)$ and we are done.

 \equiv

< ロ > < 同 > < 三 > < 三 > <

Proof.

 $\mathfrak{Q} \Rightarrow \mathfrak{Q}^*$: Let \mathcal{K} be a class of τ -structures and consider first the $\Sigma_1(R)$ formula Φ defining the class, i.e., $\mathcal{A} \in \mathcal{K} \Leftrightarrow \Phi(\mathcal{A})$.

For simplicity, assume τ has only one unary predicate symbol P.

- Consider τ as being of sort s_1 .
- Extend the language with a new sort s_0 , with a binary relation E and a constant c.
- New function symbol F, from s_1 to s_0 .

Proof.

 $\mathfrak{D} \Rightarrow \mathfrak{D}^*$: Let \mathcal{K} be a class of τ -structures and consider first the $\Sigma_1(R)$ formula Φ defining the class, i.e., $\mathcal{A} \in \mathcal{K} \Leftrightarrow \Phi(\mathcal{A})$.

For simplicity, assume τ has only one unary predicate symbol P.

- Consider τ as being of sort s_1 .
- Extend the language with a new sort s_0 , with a binary relation E and a constant c.
- New function symbol F, from s_1 to s_0 .

Let \mathcal{K}^* be the class of all models $\mathcal{N} = (N, A, E, c, P, F)$ in the extended language, such that

- (N, E) is an R-correct ZFC*-model
- 2 $(N, E) \models \Phi(c)$ (expressed in E)
- 3 $\mathcal{N} \models F$ is an isomorphic between "*c* written using *E*" and (*A*, *P*).

Proof.

Let \mathcal{K}^* be the class of all models $\mathcal{N} = (N, A, E, c, P, F)$ in the extended language, such that

- (N, E) is an R-correct ZFC^{*}-model
- 2 $(N, E) \models \Phi(c)$ (expressed in E)
- 3 $\mathcal{N} \models F$ is an isomorphic between "*c* written using *E*" and (*A*, *P*).

Proof.

Let \mathcal{K}^* be the class of all models $\mathcal{N} = (N, A, E, c, P, F)$ in the extended language, such that

- (N, E) is an R-correct ZFC^{*}-model
- 2 $(N, E) \models \Phi(c)$ (expressed in E)
- 3 $\mathcal{N} \models F$ is an isomorphic between "*c* written using *E*" and (*A*, *P*).

Now 1 essentially says " $(N, E) \in \mathbb{Q}_R$ ". By assumption (2)*, this statement is $\Delta(\mathcal{L})$ -axiomatizable, in particular $\Sigma(\mathcal{L})$ -axiomatizable.

2 and 3 are in FOL.

Therefore the class \mathcal{K}^* is $\Sigma_1(\mathcal{L})$ -axiomatizable.

So we will be done if we can prove that $\mathcal{K} = \{\mathcal{N} | \tau \mid \mathcal{N} \in \mathcal{K}^*\}.$

イロト イポト イヨト イヨト

Proof.

Claim: $\mathcal{K} = \{ \mathcal{N} | \boldsymbol{\tau} \mid \mathcal{N} \in \mathcal{K}^* \}.$

First suppose $(A, P) \in \mathcal{K}$. Let V_{α} be sufficiently large so that $V_{\alpha} \models \mathsf{ZFC}^*$ and R is absolute for V_{α} (if R is Π_1 , use Π_1 -reflection). Then

 $(V_{\alpha}, A, \in, (A, P), P, id_A)$

is an element of \mathcal{K}^* .

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

Proof.

Claim: $\mathcal{K} = \{ \mathcal{N} | \tau \mid \mathcal{N} \in \mathcal{K}^* \}.$

First suppose $(A, P) \in \mathcal{K}$. Let V_{α} be sufficiently large so that $V_{\alpha} \models \mathsf{ZFC}^*$ and R is absolute for V_{α} (if R is Π_1 , use Π_1 -reflection). Then

 $(V_{\alpha}, A, \in, (A, P), P, id_A)$

is an element of \mathcal{K}^* .

Conversely, suppose $(N, A, E, c, P, F) \in \mathcal{K}^*$. Let $\pi : (N, E) \cong (M, \epsilon)$ and let $\mathcal{B} = \pi(c)$. Then $M \models \Phi(\mathcal{B})$. But since Φ is $\Sigma_1(R)$ and M is R-correct, by absoluteness $\Phi(\mathcal{B})$ is true. Therefore, $\mathcal{B} \in \mathcal{K}$. But by condition (3), \mathcal{B} is isomorphic to (A, P). Since \mathcal{K} was assumed to be closed under isomorphisms, it follows that $(A, P) \in \mathcal{K}$, as we had to show.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Lemma

The following conditions (of Symbiosis) are equivalent:

- 2 Every $\Delta_1(R)$ -class closed under isomorphisms is $\Delta(\mathcal{L})$ -axiomatizable.
- **2**^{*} \mathbb{Q}_R is $\Delta(\mathcal{L})$ -axiomatizable.

3

イロト イヨト イヨト

Lemma

The following conditions (of Symbiosis) are equivalent:

- 2 Every $\Delta_1(R)$ -class closed under isomorphisms is $\Delta(\mathcal{L})$ -axiomatizable.
- **2**^{*} \mathbb{Q}_R is $\Delta(\mathcal{L})$ -axiomatizable.

Definition (Väänänen)

- ${\mathcal L}$ and R are ${\bf symbiotic}$ if
 - 1 $\models_{\mathcal{L}} \text{ is } \Delta_1(R), \text{ and }$
 - **2**^{*} \mathbb{Q}_R is $\Delta(\mathcal{L})$ -axiomatizable.

3

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Examples of Symbiosis

Theorem (Bagaria & Väänänen)

 $\mathcal{L}_{\omega\omega}(I)$ and Cd are symbiotic.

Э

Examples of Symbiosis

Theorem (Bagaria & Väänänen)

 $\mathcal{L}_{\omega\omega}(I)$ and Cd are symbiotic.

Proof.

We already saw that $\models_{\mathcal{L}_{\omega\omega}(I)}$ is $\Delta_1(Cd)$.

For the converse, it suffices to prove that \mathbb{Q}_{Cd} is $\Delta(\mathcal{L}_{\omega\omega}(I))$. We have $(N, E) \in \mathbb{Q}_R$ iff

- 1 *E* is wellfounded
- (*N*, *E*) \models ZFC^{*}

3 For $(M, \in) \cong (N, E)$ we have $M \models Cd(\alpha)$ iff $Cd(\alpha)$

For 3, note that $M \models Cd(\alpha)$ iff $M \models_{\mathcal{L}_{\omega\omega}(I)} \neg \exists x < \alpha Iyz(y \in x)(z \in \alpha)$

So (2 + (3)) hold iff

 $(N, E) \models_{\mathcal{L}_{\omega\omega}(I)} \mathsf{ZFC}^* \land \forall \alpha \ (\alpha \text{ is a cardinal } \leftrightarrow \neg \exists x < \alpha \ \mathsf{Iyz} \ (yEx) \ (zE\alpha)$

which is an $\mathcal{L}_{\omega\omega}(I)$ -sentence.

Examples of Symbiosis

Theorem (Bagaria & Väänänen)

 $\mathcal{L}_{\omega\omega}(I)$ and Cd are symbiotic.

Proof.

It remains to take care of 1.

- (N, E) is **ill-founded** iff there exists X such that X has no *E*-minimal element. Add a new predicate X and consider $K^* = \{(N, E, X) \mid (N, E, X) \models (X \text{ has no } E\text{-minimal element})\}$ (which can be expressed in FOL). Then (N, E) is ill-founded iff $(N, E) = \mathcal{M} \upharpoonright \tau_E$ for some $\mathcal{M} \in \mathcal{K}^*$. So being ill-founded is $\Sigma(\mathcal{L}_{\omega\omega})$, thus being well-founded is $\Pi(\mathcal{L}_{\omega\omega})$, so also $\Pi(\mathcal{L}_{\omega\omega}(I))$.
- "Lindström's trick": (X, <) is well-founded iff there are sets A_a for every a ∈ X such that a < b iff |A_a| < |A_b|. So add a new sort and new binary relation between two sorts. Consider the class K^{*} of structures M = (M, A, E, R) such that

 $\mathcal{M} \models \forall a, b \in M \ (a < b \rightarrow |R(a,.)| < |R(b,.)|)$

This can be expressed in $\mathcal{L}_{\omega\omega}(I)$. So (N, E) is well-founded iff it is the restriction of a model in \mathcal{K}^* .

Actually, an even easier proof shows the following:

Theorem

 $\mathcal{L}_{\omega\omega}(WO)$ is symbiotic to \varnothing (empty predicate, i.e., just Δ_1 -sentences).

Here $\mathcal{L}_{\omega\omega}(WO)$ is the logic with a generalized quantifier expressing that something is a well-order.

<ロト < 同ト < ヨト < ヨト -

More symbiosis

Theorem

 \mathcal{L}^2 is symbiotic with PwSt.

Proof.

The relation ⊨_{L²} is absolute for sufficiently large V_α. Moreover, being V_α is Δ₁(*PwSt*)-definable. Therefore A ⊨_{L²} φ
 ⇒ ∃V_α (A ∈ V_α ∧ V_α ⊨ (A ⊨ φ))
 ⇒ ∀V_α (A ∈ V_α → V_α ⊨ (A ⊨ φ)).

 \equiv

<ロト < 同ト < ヨト < ヨト -

More symbiosis

Theorem

 \mathcal{L}^2 is symbiotic with PwSt.

Proof.

- **1** The relation $\models_{\mathcal{L}^2}$ is absolute for sufficiently large V_{α} . Moreover, being V_{α} is $\Delta_1(PwSt)$ -definable. Therefore $\mathcal{A} \models_{\mathcal{L}^2} \phi$ $\Leftrightarrow \exists V_{\alpha} (\mathcal{A} \in V_{\alpha} \land V_{\alpha} \models (\mathcal{A} \models \phi))$ $\Leftrightarrow \forall V_{\alpha} (\mathcal{A} \in V_{\alpha} \rightarrow V_{\alpha} \models (\mathcal{A} \models \phi)).$
- 2* To show: Q_{PwSt} is ∆(L²). But this is easy since in full L² we can define the true power set, i.e., there is a L²-sentence φ(x, y) such that (M, ∈) ⊨ φ(x, y) iff y = P(x).

1

More symbiosis

Theorem

 \mathcal{L}^2 is symbiotic with PwSt.

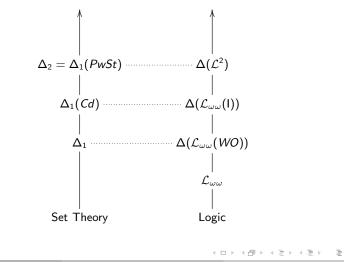
Proof.

- **1** The relation $\models_{\mathcal{L}^2}$ is absolute for sufficiently large V_{α} . Moreover, being V_{α} is $\Delta_1(PwSt)$ -definable. Therefore $\mathcal{A} \models_{\mathcal{L}^2} \phi$ $\Leftrightarrow \exists V_{\alpha} (\mathcal{A} \in V_{\alpha} \land V_{\alpha} \models (\mathcal{A} \models \phi))$ $\Leftrightarrow \forall V_{\alpha} (\mathcal{A} \in V_{\alpha} \rightarrow V_{\alpha} \models (\mathcal{A} \models \phi)).$
- 2* To show: Q_{PwSt} is ∆(L²). But this is easy since in full L² we can define the true power set, i.e., there is a L²-sentence φ(x, y) such that (M, ∈) ⊨ φ(x, y) iff y = P(x).

Remark: In fact, $\Delta_1(PwSt) = \Delta_2$. This is because Δ_2 -formulas are absolute for \mathcal{H}_{θ} and "being \mathcal{H}_{θ} " can also be defined in a $\Delta_1(PwSt)$ -way.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Symbiosis



Application of Symbiosis: downward Löwenheim-Skolem (one of many possible versions) and downward reflection.

Definition

The downwards Löwenheim-Skolem number of \mathcal{L} is the least κ such that if $\mathcal{A} \models_{\mathcal{L}} \phi$ then there is a sub-structure $\mathcal{B} \subseteq \mathcal{A}$ s.t. $|\mathcal{B}| < \kappa$ and $\mathcal{B} \models_{\mathcal{L}} \phi$. Notation: $\mathsf{DLST}(\mathcal{L}) = \kappa$

Definition

The **downward structural reflection number** for a predicate R is the least κ such that if \mathcal{K} is a $\Sigma_1(R)$ -class of τ -structures (for fixed τ), then for every $\mathcal{A} \in K$ there is an elementary sub-structure $\mathcal{B} \preceq \mathcal{A}$ such that $|\mathcal{B}| < \kappa$ and $\mathcal{B} \in \mathcal{K}$. Notation: $\text{DSR}(R) = \kappa$

Theorem (Bagaria-Väänänen 2015)

Suppose \mathcal{L} and R are symbiotic. Then $\text{DLST}(\mathcal{L}) = \kappa$ iff $\text{DSR}(R) = \kappa$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem (Bagaria-Väänänen 2015)

Suppose \mathcal{L} and R are symbiotic. Then $\text{DLST}(\mathcal{L}) = \kappa$ iff $\text{DSR}(R) = \kappa$.

Proof.

- \leftarrow is immediate: let ϕ be an \mathcal{L} -sentence and $\mathcal{A} \models \phi$. By condition (1) of Symbiosis, $\operatorname{Mod}(\phi)$ is a $\Delta_1(R)$ -class, in particular, a $\Sigma_1(R)$ -class. So $\mathcal{A} \models \phi \Rightarrow \mathcal{A} \in \operatorname{Mod}(\phi) \Rightarrow \exists \mathcal{B} \preceq \mathcal{A}$ with $|\mathcal{B}| \leq \kappa$ and $\mathcal{B} \in \operatorname{Mod}(\phi) \Rightarrow \mathcal{B} \models \phi$.
- \Rightarrow If we just wanted to prove downwards reflection for $\Delta_1(R)$ classes and without elementarity, we could use a direct proof. But this result is stronger. The main idea is: reflection for Σ_1 -classes holds in ZFC!

1

Proof.

Let \mathcal{K} be a $\Sigma_1(R)$ -class, let $\mathcal{A} \in \mathcal{K}$, and let Φ be the defining formula.

Let \mathcal{K}^* be the class of models (N, E, c) such that (N, E) is isomorphic to an *R*-correct ZFC^{*}-model (M, \in) satisfying $(M, \in) \models \Phi(c)$. This is defined using \mathbb{Q}_R , so by condition (2) of Symbiosis \mathcal{K}^* is $\Delta(\mathcal{L})$ -axiomatizable. Therefore there exists ϕ in an extended language, such that $(N, E, c) \in \mathcal{K}^*$ iff $(N, E, c, ...) \models \phi$.

Let \mathcal{H}_{θ} be sufficiently large so that $\mathcal{A} \in \mathcal{H}_{\theta}$ and $\mathcal{H}_{\theta} \models \Phi(\mathcal{A})$. Then $(\mathcal{H}_{\theta}, \in, \mathcal{A}) \in \mathcal{K}^{*}$, so some extension $(\mathcal{H}_{\theta}, \in, \mathcal{A}, ...) \models \phi$. Using DLST(\mathcal{L}), there is $(N, \in, \mathcal{A}, ...) \subseteq (\mathcal{H}_{\theta}, \in, \mathcal{A}, ...)$ such that $(N, \in, \mathcal{B}, ...) \models \phi$ and $|N| < \kappa$. Thus $(N, \in \mathcal{A}) \in \mathcal{K}^{*}$, and since \mathcal{K}^{*} is closed under isomorphisms, also the transitive collapse $(M, \in, \overline{\mathcal{A}})$ of (N, \in, \mathcal{A}) is in \mathcal{K}^{*} . But then $(M, \in) \models \Phi(\overline{\mathcal{A}})$, and (M, \in) was *R*-correct, so by upwards $\Sigma_{1}(R)$ -absoluteness, $\Phi(\overline{\mathcal{A}})$ is true, and $|\overline{\mathcal{A}}| \leq |M| < \kappa$.

To show that, additionally, $\bar{\mathcal{A}} \leq \mathcal{A}$, use a more complicated argument by adding **Skolem** functions to the models in \mathcal{K}^* .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Application:

Theorem

 $DSR(PwSt) = \kappa$ iff κ is the first supercompact cardinal.

Proof.

It is known that $DLST(\mathcal{L}^2) = \kappa$ iff κ is the first supercompact (Magidor). So by Symbiosis between \mathcal{L}^2 and PwSt, the same holds for $DSR(\mathcal{L}^2)$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Downward Löwenheim-Skolem

Definition

The strict downwards Löwenheim-Skolem number of \mathcal{L} is the least κ such that if $\mathcal{A} \models_{\mathcal{L}} \phi$ and $|\mathcal{A}| = \kappa$, then there is a sub-structure $\mathcal{B} \subseteq \mathcal{A}$ s.t. $|\mathcal{B}| < \kappa$ and $\mathcal{B} \models_{\mathcal{L}} \phi$. Notation: DLST⁻(\mathcal{L}) = κ

Definition

The strict downward structural reflection number for a predicate R is the least κ such that if \mathcal{K} is a $\Sigma_1(R)$ -class of τ -structures (for fixed τ), then for every $\mathcal{A} \in \mathcal{K}$ such that $|\mathcal{A}| = \kappa$, there is an elementary sub-structure $\mathcal{B} \preceq \mathcal{A}$ such that $|\mathcal{B}| < \kappa$ and $\mathcal{B} \in \mathcal{K}$. Notation: $\text{DSR}^-(R) = \kappa$

Theorem (Bagaria-Väänänen 2015)

Suppose \mathcal{L} and R are symbiotic. Then $\text{DLST}^{-}(\mathcal{L}) = \kappa$ iff $\text{DSR}^{-}(R) = \kappa$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Large Cardinal Strength

Theorem (Bagaria-Väänänen)

 $\text{DLST}^{-}(\mathcal{L}_{\omega\omega}(I)) = \kappa \text{ iff } \text{DSR}^{-}(Cd) = \kappa \text{ iff } \kappa \text{ is weakly inaccessible.}$

The proof is:

- 1 DLST⁻($\mathcal{L}_{\omega\omega}(\mathsf{I})$) = $\kappa \Rightarrow \kappa$ weakly inaccessible.
- 2 κ weakly inaccessible \Rightarrow DLST⁻($\mathcal{L}_{\omega\omega}(I)$) = κ .
- **3** The theorem follows from Symbiosis between $\mathcal{L}_{\omega\omega}(I)$ and Cd.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Large Cardinal Strength

Theorem (Bagaria-Väänänen)

 $DLST^{-}(\mathcal{L}_{\omega\omega}(I)) = \kappa$ iff $DSR^{-}(Cd) = \kappa$ iff κ is weakly inaccessible.

The proof is:

- 1 DLST⁻($\mathcal{L}_{\omega\omega}(I)$) = $\kappa \Rightarrow \kappa$ weakly inaccessible.
- 2 κ weakly inaccessible \Rightarrow DLST⁻($\mathcal{L}_{\omega\omega}(I)$) = κ .
- 3 The theorem follows from Symbiosis between $\mathcal{L}_{\omega\omega}(I)$ and Cd.

Another example:

- 1 W^{Reg} = the generalized quantifier expressing that < is a well-order of order-type a regular cardinal.
- 2 Reg = the set-theoretic predicate " α is a regular cardinal"
- 3 $\mathcal{L}_{\omega\omega}(\mathsf{I}, W^{Reg})$ and Reg are symbiotic.

Theorem (Bagaria-Väänänen)

 $\mathsf{DLST}^{-}(\mathcal{L}_{\omega\omega}(\mathsf{I}, W^{\mathsf{Reg}})) = \kappa \text{ iff } \mathsf{DSR}^{-}(\mathsf{Reg}) = \kappa \text{ iff } \kappa \text{ is weakly Mahlo.}$

We also have the basic case:

Corollary

 $\mathsf{DLST}(\mathcal{L}_{\omega\omega}(\mathsf{WO})) = \omega.$

Proof.

Recall that $\mathcal{L}_{\omega\omega}(WO)$ is symbiotic with \emptyset . But downwards structural reflection for Σ_1 classes is true in ZFC.

3

< □ > < 同 > < 三

Now, let's look at other properties (work in progress).

Originally, we were interested in the question of **compactness** of strong logics \mathcal{L} .

Question

Is there a set-theoretic reflection principle for $\Sigma_1(R)$ -classes, which could be related to **compactness of** \mathcal{L} , for symbiotic \mathcal{L} and R?

Compactness is related to **upwards** Löwenheim-Skolem principles. Therefore it's natural to look at **upwards** reflection principles.

Upwards Löwenheim-Skolem and reflection

Again, one can consider various definitions.

Definition

The **upwards Löwenheim-Skolem number** of \mathcal{L} is the least κ such that if $\mathcal{A} \models_{\mathcal{L}} \phi$ and $|\mathcal{A}| \ge \kappa$, then for every $\kappa' > \kappa$ there is a super-structure $\mathcal{B} \supseteq \mathcal{A}$ with $|\mathcal{B}| \ge \kappa'$ and $\mathcal{B} \models_{\mathcal{L}} \phi$. Notation: $ULST(\mathcal{L}) = \kappa$.

Remarks:

- One may replace "super-structure" by "elementary extension". This may (sometimes) give equivalent definitions.
- 2 The Hanf number is the same but without the requirement of "super-structure". Note that the Hanf number is always defined (by diagonalization) in ZFC, but ULST(L) usually implies Large Cardinals.
- 3 There are possible variations, e.g., for sets of sentences instead of just φ, or requiring that B is an elementary extension, or even an L-elementary extension, etc.

Compactness \Rightarrow upwards Löwenheim-Skolem, but not (always) vice versa.

First attempt: "for every $\Sigma_1(R)$ -class \mathcal{K} of τ -structures, if there is $\mathcal{A} \in \mathcal{K}$ with $|\mathcal{A}| \geq \kappa$, then for every $\kappa' > \kappa$ there is $\mathcal{B} \in \mathcal{K}$ with $\mathcal{A} \preceq \mathcal{B}$ and $|\mathcal{B}| \geq \kappa'$."

Э

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

First attempt: "for every $\Sigma_1(R)$ -class \mathcal{K} of τ -structures, if there is $\mathcal{A} \in \mathcal{K}$ with $|\mathcal{A}| \geq \kappa$, then for every $\kappa' > \kappa$ there is $\mathcal{B} \in \mathcal{K}$ with $\mathcal{A} \preceq \mathcal{B}$ and $|\mathcal{B}| \geq \kappa'$."

But there are several problems.

- 1 We must be careful about the size of the language τ .
- 2 Symbiosis relies on the Δ-operator. While the Δ-operator preserves downwards LST, it does not, in general, preserve upwards LST.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Solution: bounded version of everything

- We need something called the **bounded** Δ-operator (which Väänänen had already introduced)
- But then we must also adept the set-theoretic notion of a Σ_1 -formula to a **bounded** version.
- This requires the new concept: **bounded** Symbiosis.
- The reflection principle must also be bounded.

・ロト ・ 一 ト ・ ヨ ト

Bounded Δ

Definition

A class \mathcal{K} of τ -structures is $\Sigma^{\mathcal{B}}(\mathcal{L})$ -axiomatisable if there is ϕ in some extended language τ' , such that

- 2 for all \mathcal{A} there exists a cardinal $\lambda_{\mathcal{A}}$, such that for any τ' -structure \mathcal{B} : if $\mathcal{B} \models \phi$ and $\mathcal{A} = \mathcal{B} \upharpoonright \tau$ then $|\mathcal{B}| \leq \lambda_{\mathcal{A}}$.
- \mathcal{K} is $\Delta^{\mathcal{B}}(\mathcal{L}^*)$ -axiomatisable if both \mathcal{K} and its complement are $\Sigma^{\mathcal{B}}(\mathcal{L}^*)$ -axiomatisable.

Idea: there is a **bound** on the size by which we need to extend the model.

Väänänen 1980:

- for many logics \mathcal{L} we have $\Delta(\mathcal{L}) = \Delta^{\mathcal{B}}(\mathcal{L})$.
- for some logics, this is consistently false.
- Δ^{B} preserves the Hanf number of \mathcal{L} .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ●

Σ_1^B formula relation

Well \ldots since we changed Δ to $\Delta^{\mathcal{B}}$ we also need a corresponding change on the set theory side!

Definition

A formula $\phi(x)$ in set theory is **definably bounding** if for some Δ_0 formula ψ :

 $\forall x(\phi(x) \leftrightarrow \exists y(\psi(x,y) \land \rho(y) < F(\rho(x)))$

where F is a so-called **definable bounding function**. This essentially means (modulo some technicalities) that the class

 $\{(A, B) | F(|A|) \ge |B|\}$

is FOL-definable.

If R is a predicate, then $\Sigma_1^{\mathcal{B}}(R)$ and $\Delta_1^{\mathcal{B}}(R)$ is defined in the same way, but with an additional predicate symbol R.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition (Galeotti-K-Väänänen)

- ${\mathcal L}$ and R are ${\bf bouned}{-}{\bf symbiotic}$ if
 - 1 $\models_{\mathcal{L}}$ is $\Delta_1^B(R)$, and
 - 2 Every $\Delta_1^{\mathcal{B}}(R)$ -class closed under isomorphisms is $\Delta^{\mathcal{B}}(\mathcal{L})$ -axiomatizable.

Lemma (Galeotti-K-Väänänen)

All known examples of pairs \mathcal{L} and R which are symbiotic, are in fact bounded symbiotic.

We also need a corresponding version of upwards structural reflection.

In addition to bounding, we must also put restrictions on the size of vocabularies.

Definition

Let τ be a vocabulary of size λ . The **upwards structural reflection number** for R is the least κ such that for every $\Sigma_1^B(R)$ -class \mathcal{K} of τ -structures, if there is $\mathcal{A} \in \mathcal{K}$ with $|\mathcal{A}| \ge \kappa$, then for every $\kappa' > \kappa$ there is $\mathcal{B} \in \mathcal{K}$ with $\mathcal{A} \preceq \mathcal{B}$ and $|\mathcal{B}| \ge \kappa'$. Notation: $\text{USR}_{\lambda}(R) = \kappa$. Theorem (Galeotti-K-Väänänen)

Suppose \mathcal{L} and R are bounded-symbiotic. Then $ULST_{\omega}(\mathcal{L}) = \kappa$ iff $USR_{\omega}(R) = \kappa$.

The bound ω can be replaced by λ if λ satisfies suitable definability conditions.

Remarks:

- Since we consider restricted vocabularies, we also need to restrict the ULST principle accordingly.
- This result cannot hold for arbitrary languages, because for λ ≥ κ, USR_λ(R) is always false, while ULST_λ(L) may be true!

As an application, we provide lower and upper bounds for $ULST(\mathcal{L}^2)$.

Lemma (Galeotti-K-Väänänen)

If κ is an extendible cardinal, then $USR_{\omega}(PwSt) \leq \kappa$. By the main theorem, also $ULST_{\omega}(\mathcal{L}^2) \leq \kappa$.

Lemma (Galeotti-K-Väänänen)

If $ULST_{\omega}(\mathcal{L}^2) = \kappa$ then there is an *n*-extendible cardinal, for every *n*.

Conjecture ULST $_{\omega}(\mathcal{L}^2) = \kappa$ iff κ is extendible.

◆□ > ◆母 > ◆臣 > ◆臣 > 三臣 - のへで

Logic	Set Theory	Need
Downward-LST	Downward-SR	Symbiosis (Bagaria-Väänänen)
Upward-LST	Upward-SR	Bounded Symbiosis (Galeotti-K-Väänänen)
↑	↑	
Compactness	"Every well-order can be extended to a longer	???
	one, within the same class"	

Э

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Thank You!

yurii@deds.nl

<ロト < 同ト < ヨト < ヨト -

Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 706219 (REGPROP)

Yurii Khomskii (UHH & AUC)

Symbiosis and Upwards Reflection

୬ ୯.୧ 47 / 47

Э