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For f € L*(RY) we define the Fourier transform as

(&) = /R ) f(x)e ™ dx, & ecRC.
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For f € L*(RY) we define the Fourier transform as

f&) = /R ) f(x)e ™ dx, & ecRC.

Given a window function ) € L?(RY), the short-time Fourier transform (Gabor
transform) is defined as

Vof(x&)i= [ FT—xe ¢ dy, xR

for f € L2(RY).
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For f € L*(RY) we define the Fourier transform as

f&) = /R ) f(x)e ™ dx, & ecRC.

Given a window function ) € L?(RY), the short-time Fourier transform (Gabor
transform) is defined as

Vef(x,€) = [ OB =Re "< dy, x,6 e R,
Rd
for f € L?(R?). Moreover, the Wigner transform of f € L?(R%) is

Wig f(x,&) = /d f (x—|— %) f (x— %)e"‘t'E dt, x,&eR9.

R
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Paley-Wiener Theorems

Classical Paley-Wiener Theorem

A function f satisfies f € C>°(R) with supp  C [—R, R] if and only if f is an
entire function such that for every k € Ny there exists Cix > 0 such that

(2)] < Cu(L + [2]) ez,

for every z € C.
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Paley-Wiener Theorems

Classical Paley-Wiener Theorem

A function f satisfies f € C>°(R) with supp  C [—R, R] if and only if f is an
entire function such that for every k € Ny there exists Cix > 0 such that

(2)] < Cu(L + [2]) ez,

for every z € C.

Real Paley-Wiener Theorem (Bang, 1990, Proc. AMS)

Let 1 < p < 400 and f € C®(R) such that f(") € LP(R) for every n € Ny. Then
the following limit exists

lim [|F7)|1/" = R,

n— o0

where R = sup{|¢| : € € supp £(£)}.
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Proof (simple case)

n—o0

lim [|FM)Y" =R, R=sup{l¢|: € € supp F(€)} J
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Proof (simple case)

n—o0

lim [|FM)Y" =R, R=sup{l¢|: € € supp F(€)} J

n); 1 /T 1
IFS™ < 5"
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Proof (simple case)

lim [|FM)Y" =R, R=sup{l¢|: € € supp F(€)} J

n—o0

n)11/n T 1/n .o\nZ? 1/n
IEOS™ < FO5™ = [1(—ie)"F )y
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Proof (simple case)

lim [|FM)Y" =R, R=sup{l¢|: € € supp F(€)} J

n—o0

n)yl “(mnl . o\n# 1 g \1/n
FE™ < FO 2" = (=ie) F QI < (R™[IFll)Y" = R, n— o0
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Proof (simple case)

lim [|FM)Y" =R, R=sup{l¢|: € € supp F(€)} J

n—o0

n)yl “(mnl . o\n# 1 g \1/n
FE™ < FO 2" = (=ie) F QI < (R™[IFll)Y" = R, n— o0

= limsup||f™|3" < R.
n—o0
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Proof (simple case)

lim || £}/ = R = sup{[¢| : € € supp F(£)} J

n—o0

n)nl/n 1/n n 1/n nng 1/n
" < " = (=ie)"F(©) 1" < (R™|Fll2)" — R, n— oo

= limsup||f™|3" < R.
n—o0
Fix € > 0. We have

1F" = 1I(=i&)"F ()11
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Proof (simple case)

lim || £}/ = R = sup{[¢| : € € supp F(£)} J

n—o0

n)nl/n 1/n n 1/n nng 1/n
" < " = (=ie)"F(©) 1" < (R™|Fll2)" — R, n— oo

= limsup||f™|3" < R.
n—o0

Fix £ > 0. We have

1/2n
IR = (—iey PO = ( / |a"f<5)|2ds>
R—e<[¢|<R
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Proof (simple case)

lim || £}/ = R = sup{[¢| : € € supp F(£)} J

n—o0

n)nl/n 1/n n 1/n nng 1/n
" < " = (=ie)"F(©) 1" < (R™|Fll2)" — R, n— oo

= limsup||f™|3" < R.
n—o0

Fix £ > 0. We have

1/2n
IR = (—iey PO = ( / |a"f<5)|2ds>
R—e<[¢|<R

1/2n
— £ 2
> (R e)(/hqqlf(&n d£>

=C.>0
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Proof (simple case)

lim || £}/ = R = sup{[¢| : € € supp F(£)} J

n—o0

n)nl/n 1/n n 1/n nng 1/n
" < " = (=ie)"F(©) 1" < (R™|Fll2)" — R, n— oo

= limsup||f™|3" < R.
n—o0

Fix £ > 0. We have

1/2n
IR = (—iey PO = ( / |a"f<5)|2ds>
R—e<[¢|<R

1/2n
2(R5)</ |f(g)|2d5> —R—¢, n— o
R—e<|¢|<R

=C.>0
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Proof (simple case)

lim || £}/ = R = sup{[¢| : € € supp F(£)} J

n—o0

n)nl/n 1/n n 1/n nng 1/n
" < " = (=ie)"F(©) 1" < (R™|Fll2)" — R, n— oo

= limsup||f™|3" < R.
n—o0

Fix £ > 0. We have

1/2n
IR = (—iey PO = ( / |a"f<5)|2ds>
R—e<[¢|<R

1/2n
2(R5)</ |f(g)|2d5> —R—¢, n— o
R—e<|¢|<R

=C.>0

= liminf|[fDY" >R - ve>o.
n—o0
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Case p # 2

The proof in the case p # 2 is more complicated.
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The proof in the case p # 2 is more complicated.

Theorem (Andersen, 2004, Bull. London Math. Soc.)
Define, for R > 0,

PWR(R) := {f € C*(R) : for all N € Ny,

sup R™"n N1+ [x|)V)F("(x)| < o0}
x€R, nENyg
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The proof in the case p # 2 is more complicated.

Theorem (Andersen, 2004, Bull. London Math. Soc.)
Define, for R > 0,

PWR(R) := {f € C*(R) : for all N € Ny,

sup R™"n N1+ [x|)V)F("(x)| < o0}
x€R, nENyg

Then
1) PWr(R) C S(R).
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The proof in the case p # 2 is more complicated.

Theorem (Andersen, 2004, Bull. London Math. Soc.)
Define, for R > 0,

PWR(R) := {f € C*(R) : for all N € Ny,

sup R_"n_N(l + |x|)N|f(")(x)| < oo}
x€R, neNy

Then
1) PWi(R) C S(R).
2) The Fourier transform .% is a bijection from PWg(R) onto

{g € CZ°(R) : suppg € [-R, R]}.

David Jornet (UPV) Real PW theorems in ultradifferentiable classes




The proof in the case p # 2 is more complicated.

Theorem (Andersen, 2004, Bull. London Math. Soc.)
Define, for R > 0,

PWR(R) := {f € C*(R) : for all N € Ny,

sup R™"n N1+ [x|)V)F("(x)| < o0}
x€R, nENyg

Then
1) PWi(R) C S(R).
2) The Fourier transform .% is a bijection from PWg(R) onto

{g € CZ°(R) : suppg € [-R, R]}.

As a consequence of this theorem, Andersen gives an alternative proof of the
result of Bang, simpler than the original one.
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Aims of this work

@ Define the Paley-Wiener space PWkg in the ultradifferentiable setting and give
corresponding real Paley-Wiener theorems in the lines of Bang and Andersen.
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Aims of this work

@ Define the Paley-Wiener space PWkg in the ultradifferentiable setting and give
corresponding real Paley-Wiener theorems in the lines of Bang and Andersen.

@ Analyze the relations between the size of the support of the Fourier transform
of a function f and time-frequency representations, and give new real
Paley-Wiener theorems involving Gabor and Wigner transform.
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Ultradifferentiable setting

Definition

A non-quasianalytic weight function is a continuous increasing function
w : [0,4+00) — [0, +00) satisfying:

(«) There exists L > 0 such that w(2t) < L(w(t)+1), Vt>0;

(8) [ “Qdt < +oo;

() EIae]R b>0st. w(t)>a+blog(l+t), Vt=>0;

(0) @u @ t— w(e’) is convex.

Define w(¢) := w([¢]) for ¢ € CH.
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Ultradifferentiable setting

Definition

A non-quasianalytic weight function is a continuous increasing function
w : [0,4+00) — [0, +00) satisfying:

(«) There exists L > 0 such that w(2t) < L(w(t)+1), Vt>0;

(8) [ “Qdt < +oo;

() EIae]R b>0st. w(t)>a+blog(l+t), Vt=>0;

(0) @u @ t— w(e’) is convex.

Define w(¢) := w([¢]) for ¢ € CH.

Young Conjugate: ¢,(s) := sup;>o{ts — ¢u(t)}.
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Ultradifferentiable setting

Definition

A non-quasianalytic weight function is a continuous increasing function
w : [0,4+00) — [0, +00) satisfying:

(«) There exists L > 0 such that w(2t) < L(w(t)+1), Vt>0;

(8) [ “Qdt < +oo;

() HaeR b>0st. w(t)>a+blog(l+t), Vt=>0;

(0) @u @ t— w(e’) is convex.

Define w(¢) := w([¢]) for ¢ € CH.

Young Conjugate: ¢,(s) := sup;>o{ts — ¢u(t)}.
Definition (Bjorck, 1966)

S.(RY) is the set of all u € LY(RY) such that u, & € C*(R?) and
(i) VA> 0,0 e Ng:  sup eX0|Dy(x)| < +oo;
x€ER4
(i) YA> 0,0 e Ng:  sup O |D¥i(¢)| < +o0.
135:4
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Characterization of S, (R?)

Theorem

For u € S(RY), u € S, iff one of the following equivalent conditions is satisfied:
Q VA >0,aeN{: ||’®D¥u(x)||r < +o0, p € [l,00]
V/\>O,a€Nd |eX“E)DYG(€)]| e < 400, q € [1, 00

©p
Q VA >0, €N§: ||eAw(X) u(x)||r < 400
V)\>O,a€Nd e E¢xi(€)]| e < 400
Q VA>0: |[eMu(x)|p < +oo
YA>0: [|eME ()]s < +oo

Q Ve NI, A>03Csn >0 [x*D%u(x) e (5 < €5 Va € NY
Va € Ng, i >03Ca, > 0 xPDu(x)|ee 2 (5) < €, VB € Ng

Q Vi, A>0,3C, 5 > 0 [x*Du(x)|| e i (5 et () < ¢, 4 Vo, 8

@ YA>0,3C >0 |x*Du(x)||re (™) < ¢, Va, B € NE

Q@ Vi, A>0,3C,0 >0 [[er@Dey(x)| e i (%) < C, 5 Va € N§

Q ¢ € SLR)\{0}; VA > 0: || V,u(2)e*@||pe < +o0

<
< C
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Paley-Wiener Theorem in ultradifferentiable classes

Let K C R? a compact convex set and let f € L}(RY).
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Paley-Wiener Theorem in ultradifferentiable classes

Let K C R? a compact convex set and let f € L}(RY).

Supporting function of K: Hi(x) := sup(x,y).
yEK
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Paley-Wiener Theorem in ultradifferentiable classes

Let K C R? a compact convex set and let f € L}(RY).

Supporting function of K: Hi(x) := sup(x,y).
yEK

Theorem (Braun, Meise, Taylor, 1990)
The function f € S,,(RY) satisfies

supp fck
if and only if f is an entire function and for all £ € Ny there exists C; > 0 such that

|f(z)| < CZeHK(Imz)—Zw(z)

for all z € C1.
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Real Paley-Wiener Theorem in ultradifferentiable classes

Let w be a non-quasianalytic weight function and R > 0. We define PW%(RY) as
the set of all functions f € C>°(R9) such that for every A > 0,

sup sup R"ale)‘w(ﬁ)v(a)(xﬂ < 400.
a€ENg xeRd
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Real Paley-Wiener Theorem in ultradifferentiable classes

Let w be a non-quasianalytic weight function and R > 0. We define PW%(RY) as
the set of all functions f € C>°(R9) such that for every A > 0,

sup sup R"ale)“"(ﬁ)v(a)(xﬂ < 400.
a€ENg xeRd

Theorem
@ PW2(RY) C S, (RY).
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Real Paley-Wiener Theorem in ultradifferentiable classes

Let w be a non-quasianalytic weight function and R > 0. We define PW%(RY) as
the set of all functions f € C>°(R9) such that for every A > 0,

sup sup R"ale)“"(ﬁ)v(a)(xﬂ < 400.
a€ENg xeRd

Theorem
Q@ PWE(RY) C S, (RY).
@ A function f € S,,(RY) satisfies

sup{|¢|oc : & € supp 1?} =R < +0

if and only if f € PW%(RY).
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Real Paley-Wiener Theorem in ultradifferentiable classes

Let w be a non-quasianalytic weight function and R > 0. We define PW%(RY) as
the set of all functions f € C>°(R9) such that for every A > 0,

sup sup R"ale)“"(ﬁ)|f(°‘)(x)| < 400.
a€ENg xeRd

Theorem
Q@ PWY(RY) C S, (RY).
@ A function f € S,,(RY) satisfies
sup{|¢|oc : & € supp 1?} =R < +0

if and only if f € PW%(RY).

Notation
We denote

Ry :=sup{|{| : & € supp 7?}
In the following it may happen that R = +oc0.
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Proof of (2) of the Theorem, sufficiency

Assume f € S, (R?) satisfies sup{|¢|o : £ € suppf} = R < +0o0.
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Proof of (2) of the Theorem, sufficiency

Assume f € S, (RY) satisfies sup{||o : € € suppf} = R < +o0. By Fourier
inversion formula for x # 0 and N € Ny:
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Proof of (2) of the Theorem, sufficiency

Assume f € S, (RY) satisfies sup{||o : € € suppf} = R < +o0. By Fourier
inversion formula for x # 0 and N € Ny:

|DF(x)| =

| L 7O PO¢ vf>d§‘ o [ I o
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Proof of (2) of the Theorem, sufficiency

Assume f € S, (RY) satisfies sup{||o : € € suppf} = R < +o0. By Fourier
inversion formula for x # 0 and N € Ny:

|DF(x)| = 2n)?

/. f(Daf)(f)e“Xv@dg‘sleN | 1atierfeyiae
W/WZ Of 0 (e 4577
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Proof of (2) of the Theorem, sufficiency

Assume f € S, (RY) satisfies sup{||o : € € suppf} = R < +o0. By Fourier
inversion formula for x # 0 and N € Ny:

|DF(x)| =

/ F(D*F)()e’ vf>d§‘ P / g€ F(€)|de
e, 5 )

Now, we use that f € S, (R9) and the properties of the weight function w to
obtain:
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Proof of (2) of the Theorem, sufficiency

Assume f € S, (RY) satisfies sup{||o : € € suppf} = R < +o0. By Fourier
inversion formula for x # 0 and N € Ny:

|DF(x)| =

/ F(D*F)()e’ vf>d§‘ P / g€ F(€)|de
e, 5 )

Now, we use that f € S, (R9) and the properties of the weight function w to
obtain:

D (x)] < Cye V(i) Rlel,
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Proof of (2) of the Theorem, necessity

Let f € PW%(RY).
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Proof of (2) of the Theorem, necessity

Let f € PWg(R?). We integrate by parts,

\()I_§2N 2N;/ |D2VF(x)| dx.
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Proof of (2) of the Theorem, necessity

Let f € PWg(R?). We integrate by parts,

\()I_§2N 2N;/ |D2VF(x)| dx.

By hypothesis, we have that for every A > 0 there exists Cy (independent of N)
such that

dR?N(2N + 1)¢

‘f(§)|§C/\£%N+._.+§¢21N
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Proof of (2) of the Theorem, necessity

Let f € PWg(R?). We integrate by parts,

\()I_§2N 2N;/ |D2VF(x)| dx.

By hypothesis, we have that for every A > 0 there exists Cy (independent of N)
such that

dR?N(2N + 1)¢

‘f(§)|§C/\£%N+._.+§¢21N

We conclude since ||« > R implies &2V 4 - + €2V > RN,
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Real Paley-Wiener Theorem in ultradifferentiable classes

Theorem

Let 1 < p < +oco and f € C®(RY). We have:
Q If F(®)(x) € LP(RY) for all o € N¢, we have

1/n

f(a)( x)

lim max
n—+oo \ |a|=n
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Real Paley-Wiener Theorem in ultradifferentiable classes

Theorem

Let 1 < p < +oco and f € C®(RY). We have:
Q If F(®)(x) € LP(RY) for all o € N¢, we have

1/n

© Assume that e’\“(ﬁ)f(a)(x) € LP(RY) for all o € N§ and for some A > 0,
and that the weight function w satisfies some mild conditions. Then

f(a)( x)

lim max
n—+oo \ |a|=n

1/n
e“‘“(W)f(a)(x)HL ) = R;, forall 0<pu<A

lim max
n—4-o00 |a|=n
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Real Paley-Wiener Theorem in ultradifferentiable classes

Theorem

Let 1 < p < +oco and f € C®(RY). We have:
Q If F(®)(x) € LP(RY) for all o € N¢, we have

1/n

© Assume that e’\“(ﬁ)f(a)(x) € LP(RY) for all o € N§ and for some A > 0,
and that the weight function w satisfies some mild conditions. Then

f(a)( x)

lim max
n—+oo \ |a|=n

1/n
e“‘“(W)f(a)(x)HL ) = R;, forall 0<pu<A

lim max
n—4-o00 |a|=n

@ The first part is an extension to several variables of previous results of Bang
and Andersen.
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Real Paley-Wiener Theorem in ultradifferentiable classes

Theorem

Let 1 < p < +oco and f € C®(RY). We have:
Q If F(®)(x) € LP(RY) for all o € N¢, we have

1/n

@ Assume that e’\‘”(ﬁ)f(a)(x) € LP(RY) for all o € N§ and for some A > 0,
and that the weight function w satisfies some mild conditions. Then

() (x)

lim max
n—+oo \ |a|=n

e (7atm) (@) (x)

1/n
lim (max ) =R, forall 0 < pu <A
n—+00 \ |a|=n Lp

@ The first part is an extension to several variables of previous results of Bang
and Andersen.

@ The second part is satisfied for example when w is sub-additive.
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Proof of (2) of the Theorem, <

Assume p < oc.
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Proof of (2) of the Theorem, <

Assume p < co. Take ¢ € S, (RY) such that ® has compact support.
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Proof of (2) of the Theorem, <

Assume p < co. Take ¢ € S, (RY) such that ® has compact support. We have
lo)S PW%J) (R9) and it is easy to see that

() () )

1/n
)SR&, A > 0.

limsup | max
|a|=n Lp

n—+o00
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Proof of (2) of the Theorem, <

Assume p < co. Take ¢ € S, (RY) such that ® has compact support. We have
lo)S PW%J) (R9) and it is easy to see that

(=) (@) (x)

lim sup (max

n—+o0o lal=n

1/n
)SRA, A> 0.
Lp

Now, we fix > 0 and choose ¢ € 5,,(R) such that ¢ =1 in a neighborhood of
[—Rz, Rf]d and ¢ = 0 outside [-R; — ¢, R; + e]e.
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Proof of (2) of the Theorem, <

Assume p < co. Take ¢ € S, (RY) such that ® has compact support. We have
lo)S PW%J) (R9) and it is easy to see that

() () )

lim sup (max

n—+oo \lal=n

1/n
)SRA, A> 0.
Lp

Now, we fix £ > 0 and choose ¢ € S.(R?) such that =1 in a neighborhood of
[—R;, R¢]? and ¢ = 0 outside [-R; — ¢, R; +¢]¢. Hence, f = f * ¢.
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Proof of (2) of the Theorem, <

Assume p < co. Take ¢ € S, (RY) such that ® has compact support. We have
lo)S PW%J) (R9) and it is easy to see that

() () )

lim sup (max

n—+oo \lal=n

1/n
)SRA, A> 0.
Lp

Now, we fix £ > 0 and choose ¢ € S.(R?) such that =1 in a neighborhood of
[~ Rz, R¢]? and ¢ = 0 outside [-R; — &, R; +¢]9. Hence, f = f x ¢. So,
1/n
.)

() 79 (x)

lim sup (max e’\“(ﬁ)f*fb(o‘)(x)

n—too \Jal=n

1/n
= limsup [ max
Lp n—+oco \|a|=n
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Proof of (2) of the Theorem, <

Assume p < co. Take ¢ € S, (RY) such that ® has compact support. We have
lo)S PW%J) (R9) and it is easy to see that

(1) ¢l (@) (x)

lim sup (max

n—+oo \lal=n

1/n
)SRA, A> 0.

Now, we fix £ > 0 and choose ¢ € S.(R?) such that =1 in a neighborhood of
[~ Rz, R¢]? and ¢ = 0 outside [-R; — &, R; +¢]9. Hence, f = f x ¢. So,

1/n
= limsup [ max
Lp n—+oo \lal=n

(1) 500 (x) H )H Xl ( )H R, < Ri+e.

() 79 (x)

Iimsup(max )‘W(nu)f*(bo‘)(x)

n—too \Jal=n

.)
< limsup (max

n—too \lal=n
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Proof of (2) of the Theorem, <

Assume p < co. Take ¢ € S, (RY) such that ® has compact support. We have
lo)S PW%J) (R9) and it is easy to see that

(=) (@) (x)

lim sup (max

n—+oo \lal=n

1/n
)SRA, A> 0.

Now, we fix £ > 0 and choose ¢ € S.(R?) such that =1 in a neighborhood of
[~ Rz, R¢]? and ¢ = 0 outside [-R; — &, R; +¢]9. Hence, f = f x ¢. So,

x 1/n /n
lim sup (max e’\“’(m)f(a)(x) ) = limsup (max (F)f {(x) )
n—+oo \la|=n Le n—+oo \lal=n
< limsup (max A7) @) (x) H ) H ACCIf( )H Ry < Ri+e.
n—+oo \lal=n
Therefore
P 1/n
lim sup (max e)‘w(ﬁ)f(o‘)(x) ) < R:.
n—+oo \la|=n Lp
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Proof of (2) of the Theorem, >
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Proof of (2) of the Theorem, >

Take now 0 # £° € supp f, and assume w.l.o.g. that 0 < & < |€9] = |€°|o, where
€ =(&,....&) R
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Proof of (2) of the Theorem, >

Take now 0 # £° € supp f, and assume w.l.o.g. that 0 < & < |€9] = |€°|o, where
O =(e0,..., &) ere. )

We take ¢ € S,(RY) a suitable function with compact support s.t. (f,) # 0
with My supp vy C [5? — %,f? + %]
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Proof of (2) of the Theorem, >

Take now 0 # £° € supp f, and assume w.l.o.g. that 0 < & < |€9] = |€°|o, where
€= (... €Y. A
We take ¢ € S,(RY) a suitable function with compact support s.t. (f,) # 0

with My suppy C [€2 — 5,60 + £].
Then, for £ € R with &1 #0, A >0and 1 < p < +oo we have

(€21 = &) [(F(E), (N = (10] — e)(ETF(€). & (NI
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Proof of (2) of the Theorem, >

Take now 0 # £° € supp f, and assume w.l.o.g. that 0 < & < |€9] = |€°|o, where
50 (51’ . 352) ERd' ~
We take ¢ € S,(RY) a suitable function with compact support s.t. (f,) # 0
with My suppy C [€9 — 5,60 + £].
Then, for £ € R with &1 #0, A >0and 1 < p < +oo we have
(SEDIINGE ( YENV" = (€] = )ETF(E), & (N[
= (191 — ) (DTF(), & ()M
= (1] = )[(D F(x), F & () ()M
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Proof of (2) of the Theorem, >

Take now 0 # £° € supp f, and assume w.l.o.g. that 0 < & < |€9] = |€°|o, where
&= (&,....6) € R, )
We take ¢ € S,(RY) a suitable function with compact support s.t. (f,) # 0

with My suppep C [€0 — 5,60 + 5]
Then, for £ € R? with & #0, A > 0and 1 < p < 400 we have

(€21 = &) [(F(E), (N = (10] — e)(ETF(€). & (NI

= (1€2] — &) |(DFF(€), & "p(€)) [/
= (1€0] — &)[(DFF(x), F (&L (€)) (X)) [V
< (1€2] = &) | DR FII A" | F 2 (e (L
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Proof of (2) of the Theorem, >

Take now 0 # £° € supp f, and assume w.l.o.g. that 0 < & < |€9] = |€°|o, where
50 (51’ . 352) ERd' ~
We take ¢ € S,(RY) a suitable function with compact support s.t. (f,) # 0
with My suppy C [€9 — 5,60 + £].
Then, for £ € R? with & #0, A > 0and 1 < p < 400 we have

(1€2] = )(F(E), N = (1€2] — ) {ETF (), & (DM

= (191 — ) (DTF(), & ()M
= (1] = )[(D F(x), F & () ()M
< (€1 = DT IIF (& "
€

€8] —

< ol DI o+ 207 Cly
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Proof of (2) of the Theorem, >

Take now 0 # £° € supp f, and assume w.l.o.g. that 0 < & < |€9] = |€°|o, where
50 (51’ . 352) ERd' ~
We take ¢ € S,(RY) a suitable function with compact support s.t. (f,) # 0
with My suppy C [€9 — 5,60 + £].
Then, for £ € R with &1 #0, A >0and 1 < p < +oo we have
(1€2] = )(F(E), N = (1€2] — ) {ETF (), & (DM
= (191 — ) (DTF(), & ()M
= (1] = )[(D F(x), F & () ()M
< (€1 = DT IIF (& "
‘51‘ £

= €0 —¢/2

By the arbitrariness of ¢ > 0 and then of £° € supp

() DPF()|IL4" (n + 2d)2/ " C )

R; <liminf (max /\w(n+1)f(a)(x

n—-+o00 ‘al:n

)
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Paley-Wiener Theorems and Time-Frequency analysis

Is it possible to describe the ‘size’ of the support of the Fourier transform of f
with a limit involving time-frequency representations of f instead of the
derivatives f("(x)?
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Paley-Wiener Theorems and Time-Frequency analysis

Is it possible to describe the ‘size’ of the support of the Fourier transform of f
with a limit involving time-frequency representations of f instead of the
derivatives f("(x)?

Gabor transform

Vef(x.€) = [ FORT=X)e " dy.  (x.) € R
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Paley-Wiener Theorems and Time-Frequency analysis

Is it possible to describe the ‘size’ of the support of the Fourier transform of f
with a limit involving time-frequency representations of f instead of the
derivatives f("(x)?

Gabor transform

Vef(x.€) = [ FORT=X)e " dy.  (x.) € R

Wigner transform

Wig f(x, &) := /]Rd f (x—i— —) f (x = %)e"ft dt, (x,€) € R*
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Paley-Wiener Theorems and Time-Frequency analysis

PW%(RY) = {f € C®(RY) : YA > 0, sup sup R-121e*(7) |£(@)(x)] < +o0}.

a€eNg xeR?
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Paley-Wiener Theorems and Time-Frequency analysis

PW%(RY) = {f € C®(RY) : YA > 0, sup sup R-121e*(7) |£(@)(x)] < +o0}.

a€eNg xeR?
Let T,R >0 and ¢ € PW%(RY). We define
PWGHY(RY) == {f € C®°(RY) NS,(RY) : VA, >0

1 5
sup sup (R+ T) "———e?(F) @ g|n v, f(x, €)| < +oo).
nel\rf)ox,fel]:l){d( ) \/m |€| | ¥ ( £)| }
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Paley-Wiener Theorems and Time-Frequency analysis

PW%(RY) = {f € C®(RY) : YA > 0, sup sup R-121e*(7) |£(@)(x)] < +o0}.
aENgXERd

Let T,R > 0 and 1 € PW%(RY). We define
PWGSY(RY) := {f € C®(RY) NS, (RY): VA, >0

1 5
sup sup (R+ T) "———e?(F) @ g|n v, f(x, €)| < +oo).
nEI\FT)ox,EEEI){d( ) \/m |€| | ¥ ( 5)‘ }

Proposition

Q Let ¢ € PW%(RY). Then PW%(RY) C PWGSY(RY).

David Jornet (UPV)

Real PW theorems in ultradifferentiable classes




Paley-Wiener Theorems and Time-Frequency analysis

PW%(RY) = {f € C®(RY) : YA > 0, sup sup R-121e*(7) |£(@)(x)] < +o0}.
aENg x€ER4

Let T,R > 0 and 1 € PW%(RY). We define
PWGSY(RY) := {f € C®(RY) NS, (RY): VA, >0

1 5
sup sup (R+ T) "———e?(F) @ g|n v, f(x, €)| < +oo).
nEI\FT)ox,EEl]:I){d( ) \/m |€| | ¥ ( 5)‘ }

Proposition

Q Let ¢ € PW%(RY). Then PW%(RY) C PWGSY(RY).
Q Let £, € S,(RY) and p, q € [1,+00]. Then, for every A, u >0,

x 1/n
imsup (0O v, e [ <y + R
P.q

n—+00

where Ry = sup{|y|~ : y € suppg}.

David Jornet (UPV)

Real PW theorems in ultradifferentiable classes




Paley-Wiener Theorems and Time-Frequency analysis

PW%(RY) = {f € C®(RY) : YA > 0, sup sup R-121e*(7) |£(@)(x)] < +o0}.
aENg x€ER4

Let T,R > 0 and 1 € PW%(RY). We define
PWGSY(RY) := {f € C®(RY) NS, (RY): VA, >0

1 5
sup sup (R+ T) "———e?(F) @ g|n v, f(x, €)| < +oo).
nEI\FT)ox,EEl]:I){d( ) \/m |€| | ¥ ( 5)‘ }

Proposition
Q Let ¢ € PW%(RY). Then PW%(RY) C PWGSY(RY).
Q Let £, € S,(RY) and p, q € [1,+00]. Then, for every A, u >0,

5 1/n
imsup |Gl Vo0 [ < Ry + Ry
n—-+00 LpPsa

where R; = sup{|y|~ : ¥ € suppg}. The inequality above can be strict.

David Jornet (UPV)

Real PW theorems in ultradifferentiable classes




Paley-Wiener Theorems and Time-Frequency analysis

. 1/n
lim sup Hehw(m)‘w‘*’(f)g& Vi f(x, f)HL <R:+Rj
P.q

— )
n—-+o00 v
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Paley-Wiener Theorems and Time-Frequency analysis

5 1/n
limsup || Ol vir(x, )| " < R+ R;
Psq

— )
n—-4o00o 4

Example
Let f € S,(R) with supp f C [R; — 11, R] for some 0 < p1 < Rp < 400
€l Vif(x, E)llLb < mll Vif(x, E)IILhs

since Mg supp Vif(x, &) = [~ p, -

. Then

(1)
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Paley-Wiener Theorems and Time-Frequency analysis

5 1/n
limsup || Ol vir(x, )| " < R+ R;
Psq

— )
n—-4o00o 4

Example

Let f € S,(R) with supp f C [R; — 11, R] for some 0 < p1 < Rz < +00. Then
n 1 1
€12 Ve G )ll1sfs < pllVef (,€) 105
since Mg supp Vif(x,&) = [—p, .
So, we get

im sup 1|2 Vi (x, )|} < 1 < Ry < 2R;.
n——+00

(1)
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Paley-Wiener Theorems and Time-Frequency analysis

. 1/n
lim sup ”eA“’(m)Jr“w(g)m"wa(x,f)HL <R;+R;
P

n—+o0 q Y
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Paley-Wiener Theorems and Time-Frequency analysis

. 1/n
lim sup ”eA“’(m)Jr“w(g)m"wa(x,f)HL <R;+R;
P

n—+o0 q Y

Concerning the Wigner transform, we recall that
Wig f(x,€) = 2e* € Vf(2x,2¢), where f(y) = f(—y).
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Paley-Wiener Theorems and Time-Frequency analysis

. 1/n
lim sup He)‘“’(~+1)+““(5)|§\"V¢f(x,f)HL < R;+R;
X}

n—-+o00o ¥

Concerning the Wigner transform, we recall that

Wig f(x,€) = 2e* € Vf(2x,2¢), where f(y) = f(—y).

Proposition

Let f € S,(RY) and p,q € [1,+0oc]. Then, for all A, > 0:

. 1/n
lim Hem(m)“w(ﬁmgo Wig f(x, g)HL = R;,
P,q

n——+o0o

where R; = sup{[n|o : 7 € supp F1.
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Paley-Wiener Theorems and Time-Frequency analysis

B 1/n
lim sup He)‘w(m)me(g)manf(Xzf)HL <R+ Ry
pP,q

n—-+o00o

Concerning the Wigner transform, we recall that
Wig f(x,€) = 2e* € Vf(2x,2¢), where f(y) = f(—y).

Proposition
Let f € S,(RY) and p,q € [1,+0oc]. Then, for all A, > 0:

. 1/n
lim Hem(m)“w(ﬁmgo Wig f(x, g)HL = R;,
P,q

n——+o0o

where R; = sup{[n|o : 7 € supp F1.

We have
1/n ~
im (1] Wig £(x, )l os = R,
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Paley-Wiener Theorems and Time-Frequency analysis

B 1/n
lim sup He)‘w(m)me(g)manf(Xzf)HL <R+ Ry
pP,q

n—-+o00o

Concerning the Wigner transform, we recall that
Wig f(x,€) = 2e* € Vf(2x,2¢), where f(y) = f(—y).

Proposition
Let f € S,(RY) and p,q € [1,+0oc]. Then, for all A, > 0:

. 1/n
lim Hem(m)“w(ﬁmgo Wig f(x, g)HL = R;,
P,q

n——+o0o

where R; = sup{[n|o : 7 € supp F1.

We have
1/n

n—-+o00

David Jornet (UPV) Real PW theorems in ultradifferentiable classes

. n . 1/n
lim _[[6]" Wig (. Il = Re. lim _[lIx]" Wig £(x, |12 =

Re.




Theorem (main result)

Qr = {f € R : |§|oo < R}? HR(X) ‘= sup <X?y>' J
YEQR
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Theorem (main result)

Qr = {6 €R?: [¢|c < R}, Hr(x) := sup (x,y).
YEQRr

Let 1 < p,g < +oo0 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

|f(Z)| < CkeHR(Imz)—kw(z)’ ze (Cd.
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Theorem (main result)

Qr = {6 €R?: [¢|c < R}, Hr(x) := sup (x,y).
YEQRr

Let 1 < p,g < +oo0 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

|f(Z)| < CkeHR(Imz)—kw(z)’ ze (Cd.

(b) f € PW%(RY).
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Theorem (main result)

Qr = {6 €R?: [¢|c < R}, Hr(x) := sup (x,y).
YEQRr

Let 1 < p,g < +oo0 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

|f(Z)| < CkeHR(Imz)—kw(z)’ ze (Cd.
(b) f € PWYE(RY).
(c) f e C®(RY), XM f(@)(x) € LP(RY) for all & € Ng and A > 0 and

1/n
(i) @ R,
(5 o) (x) Lp) R: < R. )

lim max
n—+00 \ |a|=n
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Theorem (main result)

Qr = {6 €R?: [¢|c < R}, Hr(x) := sup (x,y).
YEQRr

Let 1 < p,g < +oo0 and R > 0. Then the following conditions are equivalent:

(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that
|f(Z)| < CkeHR(Imz)—kw(z)’ ze (Cd.
(b) f € PWY(RY).

(c) f e C®(RY), XM f(@)(x) € LP(RY) for all & € Ng and A > 0 and

e)xw(n%l) f(a)(x)

1/n
n—|I>Too <|r2|a_)f7 LP) =R <k (2)

(d) f e S,(R?) and supp f C Qr.
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Theorem (main result)

Qr = {6 €R?: [¢|c < R}, Hr(x) := sup (x,y).
YEQRr

Let 1 < p,g < +oo0 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

|f(2)| < CkeHR(Imz)—kw(z)’ ze (Cd.
(b) f € PWYE(RY).
(c) f e C®(RY), XM f(@)(x) € LP(RY) for all & € Ng and A > 0 and

e)xw(n%l) f(a)(x)

lim (max
n—+00 |a|:n

(d) f e S,(R?) and supp f C Qr.
(e) f € S, (RY), er)+1e(€) Wig f(x, £) € LP9(R?) for all A\, x> 0 and

1/n
Lp) —R: <R @)

n—-+o00

. 1/n
i Hekw(m)ﬂw(fmgo Wig f(x,g)HL —R: <R. (3)
X
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Corollary (C* case)

Case w(t) = log(1 + t) ]

Let 1 < p,qg < 400 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

F(2)| < C(1+|z])~keRma), 7 e C9.
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Corollary (C* case)

Case w(t) = log(1 + t) ]

Let 1 < p,qg < 400 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

F(2)| < C(1+|z])~keRma), 7 e C9.
(b) f € S(R?) and for all A > 0 there exists Cy > 0 such that

IF(x)] < BRI (Jol + D A+ [x])™ xeRY aeNg.
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Corollary (C* case)

Case w(t) = log(1 + t) ]

Let 1 < p,qg < 400 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

F(2)| < C(1+|z])~keRma), 7 e C9.

(b) f € S(RY) and for all A > 0 there exists Cy > 0 such that
IF(x)] < BRI (Jol + D A+ [x])™ xeRY aeNg.
(c) f e S(RY) and

lim (max (@) (x)
n—+o00 \ |a|=n

1/n
> =R; <R.
LP
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Corollary (C* case)

Case w(t) = log(1 + t) ]

Let 1 < p,qg < 400 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

If(2)] < Ce(1 + |z]) KetR(m2) 7 ¢ C9,
(b) f € S(RY) and for all A > 0 there exists Cy > 0 such that

IF(x)] < BRI (Jol + D A+ [x])™ xeRY aeNg.

1/n
> =R; <R.
LP

(c) f e S(RY) and
f(a)(X)

lim max
n—4-00 |a|=n

(d) f e S(RY) and supp  C Q.
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Corollary (C* case)

Case w(t) = log(1 + t) ]

Let 1 < p,qg < 400 and R > 0. Then the following conditions are equivalent:
(a) f is an entire function in C? and for all k € Ny there exists Cx > 0 such that

If(2)] < Ce(1 + |z]) KetR(m2) 7 ¢ C9,
(b) f € S(RY) and for all A > 0 there exists Cy > 0 such that

IF(x)] < BRI (Jol + D A+ [x])™ xeRY aeNg.

d
(c) feS(RY) and \/n
(@) (x) Lp) =R; <R

lim (max
n—+o00 \ |a|=n
(d) f e S(RY) and supp  C Q.
(e) f € S(RY) and

o n . 1/" — N
nﬂToo |||€‘00W1g f(X’g)HLp‘q - Rf = R
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An example

For k € Ny, let e, be the Hermite function on R defined by

dk
2 (%), Hi(x) = (~1)ke’ — e

dxk

1
0 = v
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An example

For k € Ny, let e, be the Hermite function on R defined by

dk
2 (%), Hi(x) = (~1)ke’ — e

dxk

1
0 = v

Q e € SW(R).
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An example

For k € Ny, let e, be the Hermite function on R defined by

1 : 2 d* o
S /2 _(_1\kx" Y —x
ex(x) = CINGLE e Hi(x), Hi(x) = (—1)"e il
Q e €S,(R).

Q@ Defining ¢ (v, t) := .7 1 (Wig(ej, ex)) we have

Lej,k(ya t) = (2k -+ l)ej,k(y7 t)7

L= (D, —t/2)* + (D: +y/2)*;
L& k(x,€) = (2k + 1) 4(x, €), L

= (De/2 4 x)* + (Dy /2 — £)*.
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An example

For k € Ny, let e, be the Hermite function on R defined by

dk
2 (%), Hi(x) = (~1)ke’ — e

e(x) = dxk

1
(2kkly/m)/2 €

Q e € SW(R).
Q@ Defining ¢ (v, t) := .7 1 (Wig(ej, ex)) we have

Leji(y,t) = 2k + Dejuly,t), L= (D, —t/2)* + (D, +y/2)*;
L& 4(x,€) = 2k + 1)§x(x,6), L= (De/2+x)* + (De/2 - €).

Q &(&) = Aek(§), 0 £ X € C. Then, Rs, = sup{|{| : & € supp é} = +oo.
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An example

For k € Ny, let ex be the Hermite function on R defined by

dk
LI, () = (1) e e

1
TN
Q e € SW(R).
Q@ Defining ¢ (v, t) := .7 1 (Wig(ej, ex)) we have
Lejk(y,t) = (2k +)eju(y, 1), L= (D, —t/2) +(De +y/2)*;
L& k(x,€) = (2k + 1)& x(x, &), [ = (De/2+x)* + (Dx/2 - €).

Q &(&) = Aek(§), 0 £ X € C. Then, Rs, = sup{|{| : & € supp é} = +oo.
@ We then have that for every u, A >0, p, g € [1, +o9],

lim H Ao )+’M(£)|§|"ek K(x, E)H = to0:
p.q

n—-+o0o
1/n

o) e

LP
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Arbitrary support
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Arbitrary support

P e Cl&, ..., &4] polynomial
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Arbitrary support

P e Cl&, ..., &4] polynomial
P(D) the corresponding linear partial differential operator with symbol P, where
we use the standard notation D; := —id;.
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Arbitrary support

P e Cl&, ..., &4] polynomial

P(D) the corresponding linear partial differential operator with symbol P, where
we use the standard notation D; := —id;.

For an ultradistribution T on RY, we denote

R(P,T) :=sup{|P(§)| : £ €supp T},

with the convention that R(P, T) =0if T =0.
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Arbitrary support

P € Cl&, . .., &4] polynomial

P(D) the corresponding linear partial differential operator with symbol P, where
we use the standard notation D; := —id;.

For an ultradistribution T on RY, we denote

R(P, T) :=sup{|P(§)|: £ €supp T},
with the convention that R(P, T) =0if T =0.

Theorem

Let P € C[xy,...,xq] a polynomial of degree m > 1. Let f € S,,(RY). Then the
following conditions are equivalent:

(a) VA >0 3Cy > 0 such that Vn € Ny, x € R?

x |1/m
P(D)F(x)| < GyRme (17,
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Arbitrary support

P € Cl&, . .., &4] polynomial

P(D) the corresponding linear partial differential operator with symbol P, where
we use the standard notation D; := —id;.

For an ultradistribution T on RY, we denote

R(P, T) :=sup{|P(§)|: £ €supp T},
with the convention that R(P, T) =0if T =0.

Theorem

Let P € C[xy,...,xq] a polynomial of degree m > 1. Let f € S,,(RY). Then the
following conditions are equivalent:

(a) VA >0 3Cy > 0 such that Vn € Ny, x € R?

x |1/m
P(D)F(x)| < GyRme (17,
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Arbitrary support

Theorem

Let P € C[xy,...,xq] a polynomial of degree m > 1. Let f € S,(R9). Then the
following conditions are equivalent:

(a) VA >0 3C, > 0 such that Vn € Ny, x € R?

|P(D)"f(x)| < C,\R"e7>‘“’(|%+1|1/'");
(b) R(P.7) < R.

David Jornet (UPV)

Real PW theorems in ultradifferentiable classes



Arbitrary support

Theorem

Let P € C[xy,...,xq] a polynomial of degree m > 1. Let f € S,(R9). Then the
following conditions are equivalent:

(a) VA >0 3C, > 0 such that Vn € Ny, x € R?

|P(D)"f(x)| < C,\R"e7>‘“’(|%ﬂ|1/’");
(b) R(P.7) < R.

Corollary

If P € Clxy,...,xq] is a polynomial of degree m > 1, f € S, (R9) and
1 < p < oo, we have, for all A >0,

1/n N
= R(P, ).

g Aw
lim |le (
n—-+o0o

) p(oy £

LP

David Jornet (UPV)

Real PW theorems in ultradifferentiable classes



Proof of the Corollary
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Proof of the Corollary

From a result of Andersen-De Jeu (2010) we have

o ol 2]7T) n
InlmJlrr;g e + P(D)"f(x)

Le

for all A > 0.
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Proof of the Corollary

From a result of Andersen-De Jeu (2010) we have

o ol 2]7T) n
InlmJlrr;g e + P(D)"f(x)

LP
for all A > 0.
Fix A > 0 and consider u > 0 such that He‘”“’(lxwm)

< +o0.
Lr
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Proof of the Corollary

From a result of Andersen-De Jeu (2010) we have

o ol 2]7T) n
InlmJlrr;g e + P(D)"f(x)

Le

for all A > 0.
Fix A > 0 and consider u > 0 such that He‘”“’(lxwm)

, < +o0.
Assume R(P, f) < +oo.
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Proof of the Corollary

From a result of Andersen-De Jeu (2010) we have

o ol 2]7T) n
InlmJlrr;g e + P(D)"f(x)

Le

for all A > 0.
Fix A > 0 and consider u > 0 such that He‘”“’(lxwm)

< +00.
Lr

Assume R(P, f) < 400. By the Theorem, for every R > R(P, f) and every n € N,
we have

eAw(|ﬁ1|l/m> P(D)nf(x) < (n + 1)d/pc}\+ﬂ He*uw(\xll/m) R".

Lr

Lr
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Proof of the Corollary

From a result of Andersen-De Jeu (2010) we have

o ol 2]7T) n
InlmJlrr;g e + P(D)"f(x)

LP
for all A > 0.
Fix A > 0 and consider u > 0 such that He‘”“’(lxwm)

Assume R(P, f) < 400. By the Theorem, for every R > R(P, f) and every n € N,
we have

< +00.
Lr

eAw(|ﬁ1|l/m> P(D)nf(x) < (n + 1)d/pc}\+ﬂ He*uw(\xll/m) R".

Lr

Lr

We deduce that

x |1/m
lim sup e’\w(|"71| )P(D)"f(x)

n——+oo

Lr

for each R > R(P, ).
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Example 1
Let P € C[&y, ..., &q] be a polynomial of degree m > 1. If P is hypoelliptic, then

Vei={¢eR’: |P(9)| < R}

is compact.
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Example 1
Let P € C[&y, ..., &q] be a polynomial of degree m > 1. If P is hypoelliptic, then

Vi :={€€R?: |P(§)l < R}

is compact.

Example 2

On the contrary, the fact that Vg is compact does not imply that P is
hypoelliptic. Take, for instance,

P(z) =z} — 23 + iz, z1,22 € C.
In this case

Ve={6cR?: |2 -2 +i5| <R}

is compact.
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P(D) is not hypoelliptic
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P(D) is not hypoelliptic

A polynomial P() is hypoelliptic if and only if
li I = .
Jim, [ Im.(| = +oc

[¢|—=+00
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P(D) is not hypoelliptic

A polynomial P() is hypoelliptic if and only if
li I = .
Jim, [ Im.(| = +oc
[¢]—=+o0

Now,

<
I

{zeC?: P(z)=0}
i++/—1+4z; }
2 )
where 4/—1 + 422 denote the two complex roots of 4z7 — 1.

= {ZEC2: Zy =
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P(D) is not hypoelliptic

A polynomial P() is hypoelliptic if and only if
li I = .
Jim, [ Im.(| = +oc

[¢] =40
Now,
V= {zeC?: P(z) =0}
i++/—1+4z22
= {zE(C2: zzzfl},

where £+/—1 + 4212 denote the two complex roots of 4212 — 1. Take, for instance,

i 42 — 1
§: <§17H_2£1> € V7 for gleRa

we have that [{] — 400 for |£1] — 400, but

|03
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