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Section 1

Independent families at uncountable cardinals
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Basic definitions

Definition

Assume that 𝜅 is a regular cardinal and 𝜒 is an infinite cardinal. Let 𝒜 be a
family of subsets of 𝜒 such that |𝒜|≥ 𝜅:

▶ We denote by BF𝜅(𝒜) the family of partial functions {ℎ ∶ 𝒜 → 2 ∶
|dom(ℎ)|< 𝜅} and call it the family of bounded functions on 𝒜.

▶ Given ℎ ∈ BF𝜅(𝒜), we define

𝒜ℎ = ⋂{𝐴ℎ(𝐴) ∶ 𝐴 ∈ 𝒜 ∩ dom(ℎ)},

where 𝐴ℎ(𝐴) = 𝐴 if ℎ(𝐴) = 0 and 𝐴ℎ(𝐴) = 𝜒\𝐴 otherwise. We
call 𝒜ℎ the Boolean combination of 𝒜 associated to ℎ and we refer to
{𝒜ℎ ∶ ℎ ∈ BF𝜅(𝒜)} as the family of generalized boolean combinations
of the family 𝒜.
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Independent families

Definition

Let 𝜅 be a regular cardinal. A family 𝒜 ⊆ 𝒫(𝜒) such that |𝒜|≥ 𝜅 is called
𝜅-independent if for for every ℎ ∈ BF𝜅(𝒜), the set 𝒜ℎ has size 𝜒.

A 𝜅-independent family 𝒜 is said to be maximal 𝜅-independent if it is not
properly contained in another 𝜅-independent family. We call the cardinal 𝜅 the
degree of independence of the family 𝒜.
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The issue with existence

▶ Analogously to the classical case (𝜒 = 𝜅 = 𝜔) it is possible to construct
𝜅-independent families of size 2𝜅 (under some assumptions on 𝜅).

▶ However, it is not possible to use Zorn’s lemma to prove the existence of
maximal 𝜅-independent families, if 𝜅 is uncountable.

The following result of Kunen provides necessary conditions for the existence
of maximal 𝜅-independent families in the general context when 𝜅 is a regular
uncountable cardinal.
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Kunen’s Theorem

Theorem (See Theorem 1 in [Kun83])

Suppose that 𝜅 is regular and uncountable and 𝜒 is any infinite cardinal. Also
assume that there is a maximal 𝜅-independent family 𝒜 ⊆ 𝒫(𝜒), with
|𝒜|≥ 𝜅. Then:

1. 2<𝜅 = 𝜅 and,

2. there is a Γ with sup{(2𝛼)+ ∶ 𝛼 < 𝜅} ≤ Γ ≤ min{𝜒, 2𝜅} such that,
there is a non-trivial 𝜅+-saturated Γ-complete ideal over Γ.
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Saturated Ideals

Definition
Let 𝜅 be a cardinal. An ideal ℐ of subsets of 𝜅 is said to be 𝛾-saturated if for
any {𝑋𝛼 ∶ 𝛼 < 𝛾} ⊆ ℐ+, there are 𝛼1, 𝛼2 < 𝛾 such that
𝑋𝛼1

∩ 𝑋𝛼2
∈ ℐ+. Here ℐ+ = 𝒫(𝜅)\ℐ.

For a given ideal ℐ ⊆ 𝒫(𝜅) being 𝛾-saturated is equivalent to the Boolean
algebra 𝒫(𝜅)/ℐ having the 𝛾-cc. Let Sat(𝜃, 𝛾, ℐ) abbreviate the statement “ℐ
is a 𝜃-complete, 𝛾-saturated ideal” and Sat(𝜃, 𝛾) the statement: “There is an
ideal ℐ that is 𝜃-complete and 𝛾-saturated ideal”.

9



Notice that the property Sat(𝜃, 𝛾, ℐ) gets weaker when 𝛾 increases, i.e. if
𝛾 < 𝛾′ then Sat(𝜃, 𝛾, ℐ) → Sat(𝜃, 𝛾′, ℐ). Also Sat(𝜃, 𝜔) is equivalent to 𝜅
being measurable.

We will use the following result:

Theorem (Prikry, Solovay and Kakuda. See Theorem 17.1 in [Kan03])

Suppose that ℐ is a 𝛿-saturated ideal over 𝜅, where 𝛿 ≤ 𝜅+ is regular and ℙ is
a partial order with the 𝜈-cc where 𝜈 < 𝜅 and 𝜈 ≤ 𝛿. Then:

⊩ℙ
̌ℐ generated a 𝛿 − saturated ideal over 𝜅
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Coming back to Kunen’s result

Kunen’s Theorem

▶ Since Γ ≥ 𝜅, then the ideal given by the theorem must be Γ+-saturated,
which yields to an inner model with a measurable cardinal.

▶ If 𝜅 is not strongly inaccessible then Γ ≥ 𝜅+, which implies by Ulam that
𝜅 is weakly inaccessible and Solovay that is is also weakly Mahlo.

▶ If 𝜅 is strongly inaccessible, it is consistent that 𝜅 = Γ = 𝜒.
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A comment on countable independence
degree and the regular case

If we assume 𝜅 = 𝜔 the existence of maximal 𝜅-independent families at a
cardinal 𝜒 is a straightforward consequence of Zorn’s lemma. The following is a
result of Fischer and myself regarding these families.

Theorem (See [FM20])

Let 𝜒 be a measurable cardinal and let 2𝜒 = 𝜒+. Then there is a maximal
𝜔-independent family of subsets of 𝜒, which remains maximal after the
𝜒-support product of 𝛿-many copies of 𝜒-Sacks forcing.
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Also, Eskew and Fischer have studied the concept of independence for regular
cardinals. In [EF21] they prove in particular that if 𝔦(𝜅) is the minimum size
of a maximal 𝜅-independent family of subsets of 𝜅. Then, it is consistent that
𝜅+ < 𝔦(𝜅) < 2𝜅.

They also studied the spectrum of maximal 𝜅-independent families at 𝜒 and
gave a wide set of results involving it.
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Section 2

Kunen’s proof
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We review a few details of the proof of Kunen’s Theorem which will be relevant for the
results to come. Suppose that 𝜅 is a regular cardinal and let 𝒜 be a 𝜅-maximal
independent family of subsets of 𝜒.

Define the map

𝜑∶ Fn<𝜅(𝒜, 2) → 𝒫(𝜒)
𝑝 ↦ 𝒜𝑝.

where Fn𝜅(𝒜, 2) is the classical poset of partial functions 𝑝 ∶ 𝒜 → 2 with
|dom(𝑝)|< 𝜅.
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The map 𝜑

▶ 𝜑 is an isomorphism from Fn𝜅(𝒜, 2) into [𝜒]𝜒.
▶ 𝑝 ≤ 𝑞 implies 𝜑(𝑝) ⊆ 𝜑(𝑞).
▶ Two conditions 𝑝, 𝑞 are compatible in ℙ = Fn𝜅(𝒜, 2) if and only if 𝜑(𝑝)∩

𝜑(𝑞) ≠ ∅.
▶ The family 𝒜 is maximal if and only if for all 𝑋 ⊆ 𝜒 there is a 𝑝 ∈ ℙ such

that 𝜑(𝑝) ⊆∗ 𝑋 or 𝜑(𝑝) ⊆∗ 𝜒\𝑋.
▶ We can even assume that 𝒜 is maximal in a stronger sense that we call

densely maximal, meaning that for all 𝑋 ⊆ 𝜒 and all 𝑝 ∈ ℙ, there is a
𝑞 ≤ 𝑝 such that 𝜑(𝑞) ⊆∗ 𝑋 or 𝜑(𝑞) ⊆∗ 𝜒\𝑋.
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One associated ideal

Define the following ideal

ℐ𝒜 ∶= {𝑋 ⊆ 𝜒 ∶ ∀𝑝 ∈ ℙ (𝜑(𝑝) ⊈∗ 𝑋)}.

To finish the proof of the Theorem, Kunen proved that the ideal ℐ𝒜 is (2𝛼)+-
complete for all 𝛼 < 𝜅, that it is (2<𝜅)+-saturated and that 2<𝜅 = 𝜅 and so
ℐ𝒜 is in fact, 𝜅+-saturated. Hence if Γ is the minimum cardinal such that ℐ𝒜 is
not Γ-complete, one gets the desired result.
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Sufficient conditions

Lemma

Suppose 𝜅 is regular, 2<𝜅 = 𝜅, 𝜅 ≤ 𝜒 and ℐ is a 𝜅+-saturated 𝜒-complete
ideal over 𝜒 such that ℬ(Fn𝜅(2𝜒, 2)) isomorphic to 𝒫(𝜒)/ℐ.
Then, there is a maximal 𝜅-independent family of subsets of 𝜒.
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A consistency result

Theorem (Kunen)

If there is a measurable cardinal, then there is a maximal 𝜎-independent family
𝒜 ⊆ 𝒫(2𝜔1).
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The proof

▶ Start with a measurable cardinal 𝜅 in a ground model 𝑉 where CH holds.
▶ Let 𝒰 be a normal measure witnessing the measurability of 𝜅.
▶ We shall construct a model in which CH still holds and if 𝜅 = 2ℵ1 , there is

an 𝜔2-saturated, 𝜅-complete ideal ℐ over 𝜅 such that the Boolean algebras
𝒫(𝜅)/ℐ and ℬ(Fn𝜔1

(2𝜅, 2)) are isomorphic.
Sufficient conditions

20



▶ Let ℙ be Fn𝜔1
(𝜅, 2) and let 𝐺 to be a ℙ-generic filter over 𝑉. In 𝑉 [𝐺],

𝜅 = 2ℵ1 and we can define the following collection of subsets of 𝜅:

𝒥 = {𝑋 ⊆ 𝜅 ∶ ∃𝑌 ∈ 𝒰(𝑋 ∩ 𝑌 = ∅)}

▶ 𝒥 is, in turn a 𝜅-complete 𝜔2-saturated ideal because ℙ has the 𝜔2-cc
and so 𝒥 is 𝜔2-saturated and 𝜅-complete in 𝑉 [𝐺].
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The rest of the argument aims to construct an isomorphism between the Boolean
algebras 𝒫(𝜅)/ℐ and ℬ(Fn𝜔1

(2𝜅, 2)) in 𝑉 [𝐺].
▶ Let 𝑗 ∶ 𝑉 → 𝑀 = Ult(𝑉 , 𝒰) be the ultrapower embedding associated

to 𝒰, i.e. 𝑗 is elementary, crit(𝑗) = 𝜅.
▶ Let 𝜅∗ = 𝑗(𝜅) > 𝜅, then 2𝜅 < 𝜅∗ < (2𝜅)+ and the posets Fn𝜔1

(2𝜅, 2)
and Fn𝜔1

(𝜅∗\𝜅, 2) are isomorphic.
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The isomorphism

Let’s define the isomorphism Γ ∶ 𝒫(𝜅)/ℐ → ℬ(Fn𝜔1
(𝜅∗\𝜅, 2)) in 𝑉 [𝐺] as

follows: Given [𝑋] ∈ (𝒫(𝜅)/ℐ)𝑉 [𝐺], and let 𝑋̇ be a ℙ-name for the set 𝑋.
We define the function as follows:

Γ([𝑋]) ∶= ⋁{𝑞 ∈ Fn𝜔1
(𝜅∗\𝜅, 2) ∶ ∃𝑝 ∈ 𝐺(𝑝 ∪ 𝑞 ⊩ ̌𝜅 ∈ 𝑗(𝑋̇))}.
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▶ Recall that 𝑗(ℙ) = 𝑗(Fn𝜔1
(𝜅, 2)) = Fn𝜔1

(𝜅∗, 2) ≃ ℙ × ℚ, where
ℚ = Fn𝜔1

(𝜅∗\𝜅, 2). Also, every element of the poset ℚ is represented in
Ult(𝑉 , 𝒰) by a sequence (𝑞𝛼 ∶ 𝛼 < 𝜅) such that 𝑞𝛼 ∈ ℚ for all 𝛼 < 𝜅.

▶ Thus, if 𝐻 is ℚ-generic over 𝑉 [𝐺], then 𝐺 × 𝐻 is 𝑗(ℙ)-generic over 𝑉
and we can define a map 𝑗 to 𝑗∗ ∶ 𝑉 [𝐺] → 𝑀[𝐺 × 𝐻] as 𝑗∗(𝑋) =
(𝑗(𝑋̇))𝐺×𝐻 in 𝑉 [𝐺 × 𝐻]. So, we can ask for a given set 𝑌 ∈ 𝑉 [𝐺]
whether or not ̌𝜅 ∈ (𝑗( ̇𝑌 ))𝐺×𝐻.
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Two more consistency results

Corollary

Assume 𝜅 is strongly compact in 𝑉. Then in 𝑉 [𝐺], where 𝐺 is ℙ-generic (for
ℙ = Fn𝜔1

(𝜅, 2) like in the theorem above) for every cardinal 𝜒 ≥ 𝜅 such that
cf(𝜒) ≥ 𝜅 there is a maximal 𝜎-independent family of subsets of 𝜒.

Theorem

Let 𝛿 be a regular cardinal such that 2<𝛿 = 𝛿 and 𝜅 be a measurable cardinal
above it. Then there is a maximal 𝛿-independent family 𝒜 ⊆ 𝒫(2𝛿).
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Section 3

The singular case

26



Framework

Now, we want to study the concept of independence in the case when 𝜆 is a
singular cardinal of cofinality 𝜅 < 𝜆.

Look at the definition of Independence and notice, there is no a priori restriction
about lifting it to the context of a singular.
Note that if 𝒜 is 𝜆-independent, then it is 𝜆′-independent for all 𝜆′ < 𝜆; in
particular cf(𝜆) = 𝜅-independent. The other direction does not hold:
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Hausdorff’s example at ℵ𝜔

Let

𝒞 = {(𝑎, 𝐴) ∶ 𝑎 ∈ [𝜆]<𝜔, 𝐴 ⊆ 𝒫(𝑎)}

and note |𝒞|= ℵ<𝜔
𝜔 = ℵ𝜔.

For 𝑋 ⊆ 𝜆 define

𝒴𝑋 = {(𝑎, 𝐴) ∈ 𝒞 ∶ 𝑋 ∩ 𝑎 ∈ 𝐴}.

Then, 𝒜 = {𝒴𝑋 ∶ 𝑋 ⊆ 𝜆} ⊆ 𝒫(𝒞) ≃ 𝒫(ℵ𝜔) is 𝜔-independent (or
𝜎-independent).
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Given 𝑋0, 𝑋1, … 𝑋𝑖 and 𝑍0, 𝑍1, … 𝑍𝑗 for 𝑖, 𝑗 < 𝜔, if 𝑎 ∈ [𝜆]<𝜔 is such
that 𝑋𝑙 ∩ 𝑎 ≠ 𝑋𝑙′ ∩ 𝑎 ≠ 𝑍𝑛 ∩ 𝑎 ≠ 𝑍𝑛′ ∩ 𝑎 for all 𝑙, 𝑙′ ≤ 𝑖 and 𝑛, 𝑛′ ≤ 𝑗.
Then 𝑎 ∈ ⋂𝑙≤𝑖 𝒴𝑋𝑙

∩ ⋂𝑙≤𝑗 𝜆\𝒴𝑍𝑗
.

▶ Notice that 𝒜 is not 𝜔1-independent: If 𝑋0 ⊆ 𝑋1 ⊆ … 𝑋𝑛 ⊆ … is
cofinal in 𝜆. Take (𝑎, 𝐴) ∈ ⋂𝑖 even 𝒴𝑋𝑖

∩ ⋂𝑖 odd 𝜆\𝒴𝑋𝑖
. Since the

sequence of the 𝑋𝑛 ’s is cofinal there is a 𝑛𝑎 ∈ 𝜔 (we can take it minimal)
such that 𝑎 ⊆ 𝑋𝑛𝑎

, but then for all 𝑖 ≥ 𝑛𝑎, 𝑎 ∩ 𝑋𝑖 = 𝑎 which is a
contradiction.
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More simple properties

The former is a general behavior:

Proposition
Let 𝜆 be a singular cardinal of cofinality 𝜅 < 𝜆. Suppose that 𝒜 is a
𝜅-independent family of subsets of 𝜆, then 𝒜 is not 𝜅+-independent.

Proposition
Suppose 𝜆 is a strong limit singular cardinal with cf(𝜆) = 𝜅. Then there is a
𝜅-independent family of subsets of 𝜆 of size 2𝜆.
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Maximality

Now we turn into maximality and the issue of existence of maximal independent
families at singular cardinals. From now on, we assume that 𝜆 is a singular
cardinal of cofinality 𝜅 < 𝜆.

First we establish that a 𝜅-independent family 𝒜 ⊆ [𝜆]𝜆 is maximal if for all
𝑋 ∈ [𝜆]𝜆 there is a bounded function BF𝜅(𝒜) such that either 𝒜ℎ\𝑋 or
𝒜ℎ ∩ 𝑋 is bounded in 𝜆 (i.e. of size < 𝜆).
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Cases

▶ Let’s consider the case where 𝜆 is singular of countable cofinality. In this
case existence of a maximal 𝜔-independent family (or just independent) of
subsets of 𝜆 can be proven using Zorn’s lemma.

▶ In the case of 𝜆 singular of cofinality 𝜅 > 𝜔 we have the following: if there
exists 𝒜 ⊆ [𝜆]𝜆 a maximal 𝜅-independent family, then Kunen’s Theorem
implies that 2<𝜅 = 𝜅 and that there is an ordinal Γ with sup{(2𝛼)+ ∶
𝛼 < 𝜆} ≤ Γ ≤ min{𝜆, 2𝜅} such that, there is a non-trivial 𝜅+-saturated
Γ-complete ideal over Γ.
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Our results

The next result guarantees the existence of a maximal 𝜅-independent family at
a singular cardinal 𝜆 of cofinality 𝜅, when we assume the existence of maximal
𝜅-independent families at cardinals (𝜆𝛼 ∶ 𝛼 < 𝜅) converging to 𝜆.

Lemma
Assume that 𝜆 is a singular cardinal of cofinality 𝜅 which is a limit of the
sequence of cardinals (𝜆𝛼 ∶ 𝛼 < 𝜅) of regular cardinals such that, for each
𝛼 < 𝜅, there is a maximal 𝛿-independent family 𝒜𝛼 ⊆ [𝜆𝛼]𝜆𝛼 and
𝛿 ≤ 𝜅 < 𝜆0 is regular such that there is a maximal 𝛿-independent family of
subsets of 𝜅. Then, there is a maximal 𝛿-independent family ℬ ⊆ [𝜆]𝜆.
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Lemma (An improvement of the lemma above)

Assume that 𝜆 is a singular cardinal of cofinality 𝜅 which is a limit of the
sequence of cardinals (𝜆𝛼 ∶ 𝛼 < 𝜅). Let also (𝛿𝛼 ∶ 𝛼 < 𝜅) be a sequence of
regular cardinals with limit 𝜅. Suppose also that for each 𝛼 < 𝜅, there is a
maximal 𝛿𝛼-independent family 𝒜𝛼 ⊆ [𝜆𝛼]𝜆𝛼 and 𝜅 < 𝛿0 is regular such
that there is a maximal 𝜅-independent family of subsets of 𝜅. Then, there is a
maximal 𝜅-independent family ℬ ⊆ [𝜆]𝜆.
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Theorem
Start with a ground model 𝑉 in which GCH holds. Suppose that 𝜆 is a singular
cardinal of cofinality 𝜅 which is a limit a sequence of cardinals (𝜆𝛼 ∶ 𝛼 < 𝜅).
Let also (𝛿𝛼 ∶ 𝛼 < 𝜅) be a sequence of regular cardinals converging to 𝜅 so
that 𝛼 ≤ 𝛿<𝛿𝛼𝛼 = 𝛿𝛼 and 𝜅𝛼 is 𝛿𝛼-supercompact for all 𝛼 < 𝜅 . Then there is
a generic extension of a universe 𝑉 ⊧ GCH such that:

𝑉 ℙ ⊧ There is a maximal 𝜅-independent family of subsets of 𝜆
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A refinement

Theorem
Assume that 𝜆 is a singular cardinal of cofinality 𝜅 which is a strong limit of the
sequence of cardinals (𝜆𝛼 ∶ 𝛼 < 𝜅). Let also (𝛿𝛼 ∶ 𝛼 < 𝜅) be a sequence of
regular cardinals with limit 𝜅. Suppose also that for each 𝛼 < 𝜅, there is a
maximal 𝛿𝛼-independent family 𝒜𝛼 ⊆ [𝜆𝛼]𝜆𝛼 of size 𝜌𝛼 and 𝜅 < 𝛿0 is
regular such that there is a maximal 𝜅-independent family of subsets of 𝜅. Put
also 𝜒𝜆̄ = tcf(Π𝑖<𝜅𝜆𝑖, <∗) and 𝜒 ̄𝜌 = tcf(Π𝑖<𝜅𝜌𝑖, <∗).

Then, there is a maximal 𝜅-independent family ℬ ⊆ [𝜆]𝜆 of cardinality 𝜒𝜆̄ ⋅ 𝜒 ̄𝜌.

36



Sizes of independent families (work in
progress)

Let 𝜆 be a singular cardinal of cofinality 𝜅 < 𝜆, let’s define:

𝔦(𝜆) = {|𝒜|∶ 𝒜 ⊆ [𝜆]𝜆 such that 𝒜 is maximal 𝜅-independent}

▶ Eskew-Fischer’s results.
▶ Shelah’s result on 𝔡(𝜆).
▶ The main open question.
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