Asymptotic differential algebra and logarithmic transseries

Allen Gehret

Universität Wien, Institut für Mathematik,
Kurt Gödel Research Center

allen.gehret@univie.ac.at

KGRC Research Seminar
4. März 2020

du Bois - Reymond (1871–1882) “calculation of infinities”
Borel (1899)
Hahn (1907)
Hausdorff (1909, 1914)
Hardy (1911–1928) “Orders of infinity”, log-exp functions
Rosenlicht (1972–1995)
Ecalle (1975–1993) Dulac Problem
Bourbaki (1976) Functions of a real variable, Hardy Field appendix
vander Hoeven (1977–present)
Aschenbrenner (2000–present)
vander Dries (2000–present)

Asymptotic Differential Algebra and Model Theory of Transseries
Discrete

Geometric series \((r > 0)\)

\[\sum r^n \begin{cases} \text{converges if } r < 1 \\ \text{diverges if } r \geq 1 \end{cases} \]

Continuous

\[\int r^x \, dx \begin{cases} \text{converges if } r < 1 \\ \text{diverges if } r \geq 1 \end{cases} \]

This plus comparison test can determine any function “visible at the exponential level” but cannot determine functions “visible at the polynomial level” since \((1-\varepsilon)^n < \frac{1}{n^2} < 1 \) \((0 > \varepsilon)\) as \(n \to +\infty \)

But we can convert polynomial level functions to the exponential level with

Cauchy Condensation Test \((a_n) \) positive decreasing

\[\sum a_n \text{ converges } \iff \sum 2^n a_{2^n} \text{ converges} \]

E.g. \(\sum \frac{1}{n^3} \text{ converges } \iff \sum \frac{2^n}{(2^n)^{1+3}} \text{ converges} \]

\[\iff \sum \left(\frac{1}{2^3} \right)^n \text{ converges} \iff \sum > 0 \]
Can repeat this to get the "logarithmic criterion of order 1"

$$\sum \frac{1}{\ln(n)^{1+\varepsilon}} \text{ converges iff } \varepsilon > 0$$

$$\int_1^\infty \frac{dx}{x (\ln x)^{1+\varepsilon}} \text{ converges iff } \varepsilon > 0$$

and more generally:

$$\sum \frac{\ln^{l+1}(n)}{\ln(n)!} \text{ converges iff } \varepsilon > 0$$

$$\int_1^\infty \frac{dx}{\ln x \cdot \ln^{l+1}(n)} \text{ converges iff } \varepsilon > 0$$

where \(n_0 = x, \ l_1 = \ln x, \ l_{k+1} = \ln(l_k) \).

To summarize:

$$\int_0^\infty \text{ diverges } \quad \int_0^\infty \text{ converges}$$

$$\int_0^1 \frac{dx}{x} \quad \int_0^1 \frac{dx}{x^{1+\varepsilon}}$$

$$\int_0^1 \frac{dx}{x \ln x} \quad \int_0^1 \frac{dx}{x (\ln x)^{1+\varepsilon}}$$

\(\varepsilon > 0 \).
Hahn fields (or generalized power series): a construction

- Let a field C and an ordered (multiplicative) abelian group of “monomials” $\mathbb{M} = (\mathbb{M}; \cdot, \prec)$ be given.

- A set $\mathcal{S} \subseteq \mathbb{M}$ is **well-based** if there is no strictly increasing sequence $m_0 \prec m_1 \prec m_2 \prec \cdots$ in \mathcal{S}.

- Given a function $f : \mathbb{M} \to C$, written as a formal series $\sum_{m \in \mathbb{M}} f(m) m$ with $f(m) \equiv f(m)$, the **support** of f is $\text{supp } f := \{m \in \mathbb{M} : f(m) \neq 0\}$.

- The **Hahn field** $\mathbb{C}[[\mathbb{M}]] := \{f : \mathbb{M} \to C : \text{supp } f \text{ is well-based}\}$ is a valued field with pointwise addition and “series multiplication” (Neumann’s lemma) with residue field \mathbb{C}. Value group is an additive copy of \mathbb{M} with reverse ordering.

- Example: $\mathbb{C}[[t^\mathbb{Z}]]$, where $t := x^{-1}$, is the same as usual field of Laurent series $\mathbb{C}((x))$.
The (Ordered) Valued Field \mathbb{T}_log

Definition (The valued field \mathbb{T}_log of logarithmic transseries)

$$\mathbb{T}_\text{log} := \bigcup_n \mathbb{R}[[\mathcal{L}_n]]$$

union of spherically complete Hahn fields

where \mathcal{L}_n is the ordered group of logarithmic transmonomials:

$$\mathcal{L}_n := \ell_0^R \cdots \ell_n^R = \{\ell_0^r \cdots \ell_n^r : r_i \in \mathbb{R}\}, \quad \ell_0 = x, \ell_{m+1} = \log \ell_m$$

ordered such that $\ell_i > \ell_i^r > 1$ for all $r \in \mathbb{R}^+, i = 0, \ldots, n-1$.

Typical elements of \mathbb{T}_log look like:

- $-2x^3 \log x + \sqrt{x} + 2 + \frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots$

- $\frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \cdots + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \cdots$

Note: \mathbb{T}_log is a real closed field and thus has a definable ordering.

Also: Residue field is \mathbb{R} and value group Γ_log is additive copy of $\bigcup_n \mathcal{L}_n$ with reverse ordering.

\[
\frac{1}{x} + \frac{1}{x^2} + \frac{1}{\ell_0 \cdots \ell_2} + \frac{1}{\ell_0 \cdots \ell_3} + \cdots \in \mathbb{T}_\text{log}
\]
The derivation on \mathbb{T}_{\log}

\mathbb{T}_{\log} comes equipped with the usual termwise derivative and logarithmic derivative:

$$f \mapsto f'$$

$$f \mapsto f^\dagger := f'/f, \quad (f \neq 0)$$

subject to the usual rules: $\ell_0' = 1$, $\ell_1' = \ell_0^{-1}$, etc.

For example:

- $(x^3 \log x + \sqrt{x} + 2 + \cdots)' = 3x^2 \log x + x^2 + \frac{1}{2x^{1/2}} + \cdots$
- $(\ell_n^\dagger = \frac{1}{\ell_0 \ell_1 \cdots \ell_n}$
- $(\frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots)' = -\frac{1}{x \log x (\log \log x)^2} - \frac{2}{x \log x (\log \log x)^3} + \cdots$
- $(\ell_0^{r_0} \cdots \ell_n^{r_n})^\dagger = r_0 \ell_0^{-1} + r_1 \ell_0^{-1} \ell_1^{-1} + \cdots + r_n \ell_0^{-1} \cdots \ell_n^{-1}$

This derivative makes \mathbb{T}_{\log} into a differential field with field of constants \mathbb{R}.
Definition

K an ordered valued differential field. We call K an **H-field** if

- **H1** for all $f \in K$, if $f > C$, then $f' > 0$;
- **H2** $\mathcal{O} = C + \mathfrak{o}$ where $\mathcal{O} = \{ g \in K : |g| \leq c \text{ for some } c \in C \}$ is the (convex) valuation ring of K and \mathfrak{o} is the maximal ideal of \mathcal{O}.

Example

\mathbb{T}_{\log} is an H-field, also any Hardy field containing \mathbb{R} is an H-field.

Example

\mathbb{T}, the differential field of **logarithmic-exponential transseries** is naturally an H-field, and contains \mathbb{T}_{\log}. It is closed under exp. Typical element:

$$-3e^x + e^{\frac{e^x}{\log x}} + e^{\frac{e^x}{\log^2 x}} + e^{\frac{e^x}{\log^3 x}} + \cdots - x^{11} + 7\frac{\pi}{x} + \frac{1}{x \log x} + \cdots + e^{-x} + 2e^{-x^2} + \cdots$$
The asymptotic couple \((\Gamma, \psi)\) of an \(H\)-field \(K\)

Fact

For \(f \in K^\times\) such that \(\nu(f) \neq 0\), the values \(\nu(f')\) and \(\nu(f^\dagger)\) depend only on \(\nu(f)\).

\[
\begin{array}{ccc}
K & \xrightarrow{'} & K \\
\downarrow \nu & & \downarrow \nu \\
\Gamma & \xrightarrow{\cdots} & \Gamma \\
\end{array}
\quad
\begin{array}{ccc}
K & \xrightarrow{\dagger} & K \\
\downarrow \nu & & \downarrow \psi \\
\Gamma & \xrightarrow{\cdots} & \Gamma \\
\end{array}
\]

\((\Gamma\ is\ the\ value\ group\ of\ K)\)

Definition (Rosenlicht)

The pair \((\Gamma, \psi)\) is the asymptotic couple of \(K\).

Theorem (G)

\(\text{Th}(\Gamma_{\log}, \psi)\), the asymptotic couple of \(\mathbb{T}_{\log}\), has QE in a natural language, is model complete, has NIP, and is distal (with Elliot Kaplan, 2018).
H-fields: two technical properties

Both \mathcal{T} and \mathcal{T}_{\log} enjoy two additional (first-order) properties:

- **ω-free**: this is a very strong and robust property which prevents certain deviant behavior
 \[\forall f \neq 0 \exists g \neq 1[g' \asymp f] \quad \& \quad \forall f \exists g > 1 [f + 2g^{\uparrow \uparrow'} + 2(g^{\uparrow \uparrow})^2 \asymp (g^{\uparrow})^2] \]

- **newtonian**: this is a variant of “differential-henselian”; it essentially means that you can simulate being differential henselian arbitrarily well by sufficient coarsenings and compositional conjugations ($\partial \mapsto \phi \partial$).

\mathcal{T}_{\log} satisfies both of these properties because it has integration and is a union of spherically complete H-fields, each with a smallest “comparability class”:

\[\mathcal{T}_{\log} := \bigcup_n \mathbb{R}[[\ell_0^\mathbb{R} \cdots \ell_n^\mathbb{R}]] \]
Another nice property:

Definition

We call a real closed H-field K **Liouville closed** if

$$K' = K \quad \text{and} \quad (K^x)^\dagger = K$$

\mathbb{T} is Liouville closed, however...

\mathbb{T}_{\log} is NOT Liouville closed:

$$(\mathbb{T}_{\log})' = \mathbb{T}_{\log} \quad \text{but} \quad (\mathbb{T}_{\log}^x)^\dagger \neq \mathbb{T}_{\log}$$

E.g., an element f such that $f^\dagger = 1$ would have to behave like e^x.
The field \mathbb{T}: a success story

Let $\mathcal{L} = \{0, 1, +, -, \cdot, \partial, \leq, \preceq\}$

The following result is the starting point for the model theory of \mathbb{T}_{\log}:

Theorem (Aschenbrenner, van den Dries, van der Hoeven, 2015)

\mathbb{T} is model complete as an \mathcal{L}-structure. Furthermore, $\text{Th}_{\mathcal{L}}(\mathbb{T})$ is axiomatized by:

- real closed, ω-free, newtonian, H-field such that $\forall \varepsilon < 1, \partial(\varepsilon) < 1$;
- Liouville closed
 - $K' = K$
 - $(K^\times)^\dagger = K$

Recall: a structure M is model complete if every definable subset of M^n is existentially definable (for every n). A starting point for model completeness of \mathbb{T}_{\log} is to try to make both $(\mathbb{T}_{\log}^\times)^\dagger$ and its complement existentially definable.
Investigating \((\mathbb{T}_\log^\times)\)

\[f \in (\mathbb{T}_\log^\times) \iff \text{there exists } g \in \mathbb{T}_\log^\times \text{ such that } g^\dagger = f\]

Given \(f \in \mathbb{T}_\log^\times\), we can write it uniquely as

\[f = c \ell_0^{r_0} \cdots \ell_n^{r_n}(1 + \epsilon) \text{ for some infinitesimal } \epsilon < 1 \text{ and some } c \in \mathbb{R}_\times\]

Then we compute the logarithmic derivative:

\[(c \ell_0^{r_0} \cdots \ell_n^{r_n}(1 + \epsilon))^\dagger = r_0 \ell_0^{-1} + r_1 \ell_0^{-1} \ell_1^{-1} + \cdots + r_n \ell_0^{-1} \cdots \ell_n^{-1} + \frac{\epsilon'}{1 + \epsilon}\]

“small”

Note: \(\nu(\ell_0^{-1} \cdots \ell_n^{-1}) \in \Psi := \psi(\Gamma_{\log}^\neq) \text{ and } \nu(\epsilon'/(1 + \epsilon)) > \Psi\).

Fact

\[f \notin (\mathbb{T}_\log^\times) \iff \text{there exists } g \in \mathbb{T}_\log^\times \text{ such that } \nu(f - g^\dagger) \in \Psi \setminus \Psi\]
Introducing LD-\(H\)-fields

From now on all \(H\)-fields will have asymptotic integration \((\Gamma = (\Gamma \neq)^\prime)\).
Let \(K\) be an \(H\)-field and \(LD \subseteq K\).
We call the pair \((K, LD)\) an LD-\(H\)-field if:

LD1 LD is a \(C_K\)-vector subspace of \(K\);

LD2 \((K^\times)^\dagger \subseteq LD\);

LD3 \(I(K) := \{y \in K : y \ll f' \text{ for some } f \in \mathcal{O}\} \subseteq LD\); and

LD4 \(v(LD) \subseteq \Psi \cup (\Gamma^\geq)^\prime \cup \{\infty\}\).

We say an LD-\(H\)-field \((K, LD)\) is **full** if:

full For every \(a \in K \setminus LD\), there is \(b \in LD\) such that \(v(a - b) \in \Psi^\perp \setminus \Psi\),

and we say it is \(\Psi\)-closed if it is full and \(LD = (K^\times)^\dagger\).

Example

\((T_{\log}, (T_{\log}^\times)^\dagger)\) and \((T, T)\) are both \(\Psi\)-closed LD-\(H\)-fields.
Let $\mathcal{L}_{LD} := \{0, 1, +, -, \cdot, \partial, \leq, \preceq, LD\}$ where LD is a unary relation symbol.
Let T_{log} be the \mathcal{L}_{LD}-theory whose models are precisely the LD-H-fields (K, LD) such that:

1. K is real closed, ω-free, and newtonian;
2. (K, LD) is Ψ-closed; and
3. $(\Gamma, \psi) \models \text{Th}(\Gamma_{log}, \psi)$, where (Γ, ψ) is the asymptotic couple of K.

Conjecture

The theory T_{log} is model complete.

Embedding version of conjecture

Let (K, LD) and (L, LD_1) be models of T_{log} and suppose (E, LD_0) is a full ω-free LD-H-subfield of (K, LD) such that $(\mathbb{Q} \Gamma_E, \psi) \models \text{Th}(\Gamma_{log}, \psi)$. Let $i : (E, LD_0) \to (L, LD_1)$ be an embedding of LD-H-fields. Assume (L, LD_1) is $|K|^+$-saturated and (K, LD) is \aleph_0-saturated. Then i extends to an embedding $(K, LD) \to (L, LD_1)$ of LD-H-fields.
Given LD-H-fields (K, LD) and (L, LD^*) such that $K \subseteq L$, we say that (L, LD^*) is an extension of (K, LD) (notation $(K, LD) \subseteq (L, LD^*)$) is $LD^* \cap K = LD$.

Proposition

Suppose L is an algebraic extension of K, (K, LD) is full, and $(\Gamma, \psi) \models \text{Th}(\Gamma_{\text{log}}, \psi)$. Then there is a unique LD-set $LD^* \subseteq L$ such that $(K, LD) \subseteq (L, LD^*)$; equipped with this LD-set, (L, LD^*) also is full. Important case: L is a real closure of K.
Suppose $K \subseteq L$ is an extension of H-fields such that $L = K(C_L)$, so L is a constant field extension of K.

Proposition

Suppose K is henselian, $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$, and (K, LD) is full. Then there is a unique LD-set $LD^* \subseteq L$ such that $(K, LD) \subseteq (L, LD^*)$; equipped with this LD-set, (L, LD^*) also is full.

Thus adding new constants will never be an issue!
The Ψ-closure of an LD-H-field

Definition

We say an LD-H-field extension (K^Ψ, LD^Ψ) of (K, LD) is a Ψ-closure of (K, LD) if K^Ψ is real closed, (K^Ψ, LD^Ψ) is Ψ-closed, and for any LD-H-field extension (L, LD^*) of (K, LD) such that L is real closed and (L, LD^*) is Ψ-closed, there is an embedding $(K^\Psi, LD^\Psi) \rightarrow (L, LD^*)$ of LD-H-fields over (K, LD).

Theorem

Suppose (K, LD) is full, is λ-free, and $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$. Then (K, LD) has a unique Ψ-closure. This Ψ-closure will be differentially-algebraic over K, does not contain any proper real closed and Ψ-closed differential subfields containing K, and its asymptotic couple will model $\text{Th}(\Gamma_{\log}, \psi)$.
Newtonization: a reduction to the linear case

Suppose K is ω-free, $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$ and let K^{nt} be the newtonization of K (a newtonian extension of K with a natural universal property).

What we would like to prove:

Suppose (K, LD) is full. Then $LD^{nt} := LD + I(K^{nt})$ is the unique LD-set on K^{nt} such that $(K, LD) \subseteq (K^{nt}, LD^{nt})$; equipped with this LD-set, (K^{nt}, LD^{nt}) also is full.

It suffices(!!!) to prove the linear case:

Conjecture 1 (Linear newtonian conjecture)

There is a linearly newtonian H-field L such that $K \subseteq L \subseteq K^{nt}$ and $LD^* := LD + I(L)$ is the unique LD-set on L such that $(K, LD) \subseteq (L, LD^*)$; equipped with this LD-set, (L, LD^*) also is full.

Linearly newtonian is the fragment of newtonian that only involves degree 1 differential polynomials (differential operators).
Conjecture 2 (Immediate differentially-transcendental conjecture)

Suppose \((L, LD^*)\) is an LD-\(H\)-field extension of \((K, LD)\) such that \((K, LD), (L, LD^*) \models T_{\log}\), and suppose there is \(y \in L \setminus K\) such that \(K\langle y\rangle\) is an immediate extension of \(K\) (so \(y\) is necessarily differentially transcendental over \(K\) since \(K\) is asymptotically d-algebraically maximal). Then \(LD_y := LD + I(K\langle y\rangle)\) is the unique LD-set on \(K\langle y\rangle\) such that \((K, LD) \subseteq (K\langle y\rangle, LD_y)\); equipped with this LD-set, \((K\langle y\rangle, LD_y)\) also is full.

Note: there are weaker versions of Conjectures 1 and 2 which will suffice for our purposes (in case as written they are false).
The main “result”

Theorem (G)

Assume Conjectures 1 and 2 hold. Then T_{log} is model complete as an LD-H-field.
Recall from calculus/ODEs:

- The differential equation

\[Y' - \cos t = 0 \]

has solutions

\[\{ \sin t + c_0 : c_0 \in \mathbb{R} \} \]

- The differential equation

\[Y'' - 3Y' + 2Y = 0 \]

has solutions

\[\{ c_0 e^{2t} + c_1 e^t : c_0, c_1 \in \mathbb{R} \} \]

So the solutions are “controlled” by the constant field \(\mathbb{R} \).
Co-analyzability: a form of “controlling”

Suppose K is ω-saturated, $C \subseteq K$ is a definable set.

Definition

Let $S \subseteq K^n$ be definable. For $r \in \mathbb{N}$ we say S is **co-analyzable in r steps (relative to K and C)** if:

- (C_0) S is co-analyzable in 0 steps iff S is finite;
- (C_{r+1}) S is co-analyzable in $r + 1$ steps iff for some definable set $R \subseteq C \times K^n$,
 1. the natural projection $C \times K^n \to K^n$ maps R onto S;
 2. for each $c \in C$, the section $R(c) := \{ s \in K^n : (c, s) \in R \}$ above c is co-analyzable in r steps.

We call S **co-analyzable** if S is co-analyzable in r steps for some r.
Consequences of co-analyzability

Fact

Suppose \mathcal{L} is countable, T is complete \mathcal{L}-theory such that $T \vdash \exists x C(x)$. Then the following are equivalent for a formula $\varphi(x)$:

1. For some $K \models T$, $\varphi(K)$ is co-analyzable (relative to C),
2. For every $K \models T$, $\varphi(K)$ is co-analyzable,
3. For every $K \models T$, if C_K is countable, then so is $\varphi(K)$,
4. For all $K \preceq K^* \models T$, if $C_K = C_{K^*}$, then $\varphi(K) = \varphi(K^*)$.

Moral: (3) and (4) show there is some (possibly complicated) relationship between C and the definable set $\varphi(K)$.
Theorem (G)

Suppose K is an H-field such that

1. K is real closed, ω-free, and newtonian, and
2. K is Ψ-closed.

Then for every nonzero differential polynomial $P \in K\{Y\}$, the set

$$Z(P) := \{ y \in K : P(y) = 0 \}$$

is co-analyzable relative to the constant field C.

This was known for T (2016, ADH), but new for T_{\log} and other H-fields.