Invariant Ideal Axiom

Michael Hrušák joint with Alexander Shibakov

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México michael@matmor.unam.mx

> Wien December 2020

(日)

Fréchet and sequential spaces

- A topological space X is Fréchet if whenever x ∈ Ā then x = lim x_n for some {x_n : n ∈ ω} ⊆ A.
- A space X is sequential if $A \subseteq X$ is not closed then there is $x \notin A$ such that $x = \lim x_n$ for some $\{x_n : n \in \omega\} \subseteq A$.
- Arens space S₂ = [ω]^{≤2} where U ⊆ S₂ is open if and only if for every s ∈ U the set { s ∪ {n} ∈ S₂ : s ∪ {n} ∉ U} is finite.
- A sequential space X contains a copy of S₂ if and only if it is not Fréchet.
- Sequential fan the quotient $S(\omega) = S_2/[\omega]^{\leqslant 1}$
- (van Douwen) The product of the sequential fan and the convergent sequence of closed discrete sets is not sequential (Ø × fin and fin × Ø generate fin × fin).

イロト 不得 とくほ とくほ とうほう

- (Nyikos) Fréchet groups do not contain a copy of the sequential fan.
- Sequential groups that are not Fréchet contain a copy of the sequential fan.
- (Todorčević) There are X, Y such that $C_p(X)$ and $C_p(Y)$ are Fréchet but $C_p(X) \times C_p(Y)$ is not countably tight.

General question:

What is the structure and behavior under products of separable (countable) sequential (Fréchet) groups?

Problem (Malykhin 1978)

Is there a separable (equivalently, countable) Fréchet group which is not metrizable?

Partial positive solutions:

- $\mathfrak{p} > \omega_1 \ldots$ Yes
- (Gerlits-Nagy 1982) There is an uncountable γ -set . . . Yes
- (Nyikos 1989) p = b ... Yes

Theorem (H.-Ramos García 2014)

It is consistent with ZFC that every separable Fréchet group is metrizable.

・ロト ・同ト ・ヨト ・ヨト - ヨ

Problem (Nyikos 1981)

Is there a sequential group of intermedate sequential order?

Partial positive solutions (all due to Shibakov)

- (1996) Consistently ... Yes
- (1998) CH ... Yes

Theorem (Shibakov 2017)

It is consistent with ZFC that every sequential group is metrizable or has sequential order $\omega_{1}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

IIA : For every countable groomed topological group \mathbb{G} and every tame, invariant ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{G})$ one of the following holds:

- there is a countable S ⊆ I such that for every infinite sequence C convergent in G there is an I ∈ S such that C ∩ I is infinite, (= sequence capture)
- e there is a countable $\mathcal{H} \subseteq \mathcal{I}^+$ such that for every non-empty open $U \subseteq \mathbb{G}$ there is an $H \in \mathcal{H}$ such that $H \setminus U \in \mathcal{I}$ (= almost π -net.).

< 回 > < 三 > < 三 >

ω -hitting and tame invariant ideals

- An ideal *I* on a set X is ω-hitting if for every collection
 {X_n : n ∈ ω} of infinite subsets of X there is an element I of *I* having infinite intersection with all X_n.
- An ideal \mathcal{I} is tame if for every $X \in \mathcal{I}^+$ and every $f : X \to \omega$ there is a partition $\{P_n : n \in \omega\}$ of ω into infinite pieces such that for every $I \in \mathcal{I} \upharpoonright X$ there is an $n \in \omega$ such that $P_n \cap f[I] = \emptyset$,

i.e. if no ideal Katětov below a restriction of $\mathcal I$ is ω -hitting.

• An ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{G})$ is invariant if both $g \cdot I = \{g \cdot h : h \in I\}$ and $I \cdot g = \{h \cdot g : h \in I\}$, and $I^{-1} = \{h^{-1} : h \in I\}$ are in \mathcal{I} for every $I \in \mathcal{I}$ and $g \in \mathbb{G}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Given a topological space X and $x \in X$ let

$$\mathcal{I}_{\mathsf{x}} = \{ A \subseteq X : x \notin \overline{A} \}.$$

- A subset Y of a topological space X is entangled if $\mathcal{I}_x \upharpoonright Y$ is ω -hitting for every $x \in X$.
- A topological space X is groomed if it does not contain a dense entangled set.
- The class of groomed spaces includes all Fréchet and sequential spaces (also all subspaces of sequential spaces).

- 4 同 2 4 日 2 4 日 2

IIA: For every countable groomed topological group $\mathbb G$ and every tame, invariant ideal $\mathcal I\subseteq\mathcal P(\mathbb G)$ one of the following holds:

- there is a countable S ⊆ I such that for every infinite sequence C convergent in G there is an I ∈ S such that C ⊆* I, (= sequence capture)
- **(a)** there is a countable $\mathcal{H} \subseteq \mathcal{I}^+$ such that for every non-empty open $U \subseteq \mathbb{G}$ there is an $H \in \mathcal{H}$ such that $H \setminus U \in \mathcal{I}$ (= almost π -net.).

▲□ → ▲ □ → ▲ □ →

• For nice ideals such as nwd and scattered we can do better:

IIA for nice ideals : For every countable groomed topological group \mathbb{G} and every nice tame invariant ideal $\mathcal{I} \subseteq \mathcal{P}(\mathbb{G})$ one of the following holds:

- there is an I ∈ I such that for every C → 1_G C ⊆* I
 (= sequence capture)
- e there is a countable $\mathcal{H} \subseteq \mathcal{I}^+$ such that for every open U nbhd of 1_G there is an H ∈ \mathcal{H} such that H ⊆ U (= local π-network).

For others, i.e. compact we can get local π -network in (2) but need countably many I in (1).

nwd in Fréchet groups

Lemma (Barman-Dow)

Given a point x in a Fréchet space X and a family $\{N_i : i \in \omega\} \subseteq nwd$ there is a $C \to x$ such that $C \cap N_i$ is finite for every $i \in \omega$.

Proof.

• Pick
$$\{x_i : i \in \omega\} \to x$$
.

• For
$$i \in \omega$$
 pick $C_i \to x_i$ such that $C_i \cap \bigcup_{i \leq i} N_j = \emptyset$.

•
$$C \subseteq \bigcup_{i \in \omega} C_i$$
 such that $C \to x$.

Corollary

In a Fréchet group, nwd is a tame invariant ideal.

Proof.

- Let $f : X \to \omega$, $X \in nwd^+$. WLOG $f^{-1}(n) \in nwd$ for all $i \in \omega$.
- Fix for $g \in \mathbb{X}$, $C_g \subseteq X$, $C_g \to g$ such that $f \upharpoonright C_g$ is finite-to-one.
- $\{P_n : n \in \omega\}$ disjoint refinement of $\{f[C_g] : g \in \mathbb{G}\}.$

Assuming IIA, every countable (separable) Fréchet group is metrizable.

Proof.

As *nwd* is nice, and every dense open set contains a sequence convergent to $1_{\mathbb{G}}$, (1) of IIA fails, so there is a countable family \mathcal{X} of somewhere dense subsets of \mathbb{G} such that every open set contains an element of \mathcal{X} . Then

$${\operatorname{int}}(\overline{X}): X \in \mathcal{X}\},$$

form a ctble π -base, and as π -weight and weight coincide in topological groups, the group \mathbb{H} is first countable hence metrizable.

Corollary

Assuming IIA, $\mathfrak{p} = \omega_1$ and $\mathfrak{b} > \omega_1$.

・ロト ・四ト ・ヨト ・ヨト

Proposition

There is a countable topological group \mathbb{G} and a tame invariant ideal $\mathcal{I} \subseteq \mathcal{P}(\omega)$ such that IIA fails for \mathbb{G} and \mathcal{I} .

 $\{A_{\alpha}, B_{\alpha} : \alpha < \omega_1\} \subseteq [\omega]^{\omega}, A_{\alpha} \subseteq^* A_{\beta} \subseteq^* B_{\beta} \subseteq^* B_{\alpha} \text{ - a Hausdorff gap} \\ \mathbb{G} = [\omega]^{<\omega} \text{ with } [F]^{<\omega} \text{ open nbhds of } \emptyset, \text{ with } B_{\alpha} \subseteq^* F \text{ for some } \alpha < \omega_1, \text{ and let } \mathcal{I} = \{A \subseteq \mathbb{G} : \forall \alpha < \omega_1 \bigcup A \subseteq^* B_{\alpha}\} .$

- \mathcal{I} is a tame invariant ideal: No restriction of \mathcal{I} to a positive set is tall, and \mathcal{I} is invariant as $\bigcup a \triangle I =^* \bigcup I$ for every $I \in \mathcal{I}$ and $a \in \mathbb{G}$.
- (1) of IIA fails for $\mathcal{I}: C \to 0$ if and only if C is a point-finite family of finite sets and $C \in \mathcal{I}...$
- (2) fails: X ∈ I⁺ iff ∪ X \ B_α is infinite for some α < ω₁, and having ctbly many such X, there is an α which is a witness for all of them, hence none of them is mod I contained in [B_α]^{<ω}.

・ロン ・回 と ・ ヨン ・ ヨン - ヨー

IIA is relatively consistent with ZFC.

Proof.

Let V = L. Construct a finite support iteration $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ so that $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for a $\mathbb{L}_{\mathcal{I}^*}$ where \mathcal{I} is some tame invariant ideal on a ctble groomed group \mathbb{G} such that both (1) and (2) of IIA fail (handed to us by a bookkeeping using $\Diamond(E_1^2)$). Then:

- $\mathbb{L}_{\mathcal{I}^*}$ adds a dense entangled $D \subseteq \mathbb{G}$
- *D* remains dense and entangled by preservation theorems from (H.–Ramos-García)
- All 'reflects' so every candidate is trapped.

(日) (同) (王) (王)

Assuming IIA, every countable sequential group is either metrizable or k_{ω} .

- A topological space X is k_w if there is a countable family K of compact subsets of X such that a set U is open if and only if its intersection with every K ∈ K is relatively open in K.
- k_{ω} groups do not contain a convergent sequence of closed discrete sets.
- Countable k_{ω} groups are definable objects, they have $F_{\sigma\delta}$ topologies, and are completely classified by their compact scatteredness rank defined as the supremum of the Cantor-Bendixson index of their compact subspaces by the theorem of Zelenyuk:

Theorem (Zelenyuk 1995)

Countable k_{ω} groups of the same compact scatteredness rank are homeomorphic.

・ロッ ・ 一 ・ ・ ヨッ・・

• $\alpha < \omega_1$ let \mathcal{K}_{α} be a fixed countable family of compact subsets of the rationals \mathbb{Q} closed under translations, inverse and algebraic sums such that $\omega^{\alpha} = \sup\{\operatorname{rank}_{CB}(\mathcal{K}) : \mathcal{K} \in \mathcal{K}_{\alpha}\}$, and let

$$\tau_{\alpha} = \{ U \subseteq \mathbb{Q} : \forall K \in \mathcal{K}_{\alpha} : U \cap K \text{ is open in } K \}.$$

- τ₀ is the discrete topology on Q,
- τ_{α} is a k_{ω} sequential group topology on \mathbb{Q} and $\mathbb{Q}_{\alpha} = (\mathbb{Q}, \tau_{\alpha})$.
- \mathbb{Q} is determined by taking into account *all* of its compact subsets, so it makes sense to denote it as \mathbb{Q}_{ω_1} .

Corollary

Assuming IIA, for every infinite countable sequential group \mathbb{G} there is exactly one $\alpha \leq \omega_1$ such that \mathbb{G} is homeomorphic to \mathbb{Q}_{α} .

Assuming IIA, every countable sequential group is either metrizable or k_{ω} .

Proof

Assume \mathbb{G}^2 sequential (the general case is much harder) and \mathbb{G} not metrizable (hence not Fréchet).

- \mathbb{G} contains a copy of $S(\omega)$.
- $\bullet\,$ Consider IIA with $\mathbb G$ and cpt the ideal generated by compact sets
- Sequence capturing $\Leftrightarrow k_{\omega}$.
- local π-base ⇒ there is a sequence {C_n : n ∈ ω} of infinite closed discrete sets such that 1_G is the only accumulation point of ⋃_{n∈ω} C_n and every nbhd of 1_G contains one of the C_n's.
- Then G² is NOT sequential (the "diagonal product" of {C_n : n ∈ ω} and S(ω) has the point (1_G, 1_G) in its closure but contains no convergent sequence).

・ロン ・回と ・ヨン ・ ヨン

э

Products of sequential groups under IIA

Corollary

Assume IIA.

- The product of countably many separable Fréchet groups is Fréchet, and
- the product of finitely many countable sequential groups which are either discrete or not Fréchet is sequential.

Proof.

It suffices to note that

- The product of two k_{ω} groups is k_{ω} .
- One product of two metrizable groups is metrizable
- The product of a k_{ω} group and a discrete group is k_{ω}
- The product of a k_{ω} group and a non-discrete metrizable group is not sequential.

A (1) > A (1) > A

< ∃⇒

- Is it consistent (follows from IIA) that every countable group is either metrizable, k_ω or contains a dense set without a convergent subsequence?
- Is there (in ZFC) a Fréchet group whose square is not Fréchet?
- Is there a sequential group whose square is not sequential?
- Does IIA imply that every countably compact sequential group is metrizable? every sequential group has sequential order 1 or ω₁? If not, how to strengthen IIA to an axiom that does?
- What about IIA for definable groups?

- 4 同 2 4 日 2 4 日 2

Given a filter ${\mathcal F}$ and a definable ideal ${\mathcal I}$ on ω there is either

- an \mathcal{F}^+ -branching tree with all branches in \mathcal{I} , or
- **2** an \mathcal{F} -branching tree with all branches in \mathcal{I}^+ .
 - A tree $T \subseteq \omega^{<\omega}$ is \mathcal{X} -branching if $\emptyset \in T$ and

$$succ_T(t) = \{n : t^n \in T\} \in \mathcal{X}$$

for every $t \in T$.

- $[T] = \{ f \in \omega^{\omega} : \forall n \ (f \upharpoonright n \in T) \}.$
- All branches in \mathcal{X} abbreviates $\forall f \in [T] (\operatorname{rng}(f) \in \mathcal{X})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a filter ${\mathcal F}$ and a definable ideal ${\mathcal I}$ on ω there is either

- an \mathcal{F}^+ -branching tree with all branches in \mathcal{I} , or
- **2** an \mathcal{F} -branching tree with all branches in \mathcal{I}^+ .

Proof.

Consider the following infinite two-player game:

- 4 同 6 - 4 三 6 - 4 三 6

Given a filter \mathcal{F} and a definable ideal \mathcal{I} on ω then exactly one of the following holds:

- **(**) There is an \mathcal{F} -branching tree with all branches in \mathcal{I}^+ ,
- **2** there is an \mathcal{F} -branching tree with all branches in \mathcal{I} .
- there is an *F*⁺-branching tree with all branches in *I* and an *F*⁺-branching tree with all branches in *I*⁺.

Theorem (LC)

Let X be a countable definable space, $x \in X$ and \mathcal{J} an ideal on X. Either

- Ithere is a ctble S ⊆ J such that every sequence convergent to x is contained in an element of S, or
- **2** there is a countable local π -network consisting of \mathcal{J} -positive sets.

Proof.

Consider the Definable Ideal Dichotomy for $\mathcal{F} = \mathcal{J}^*$ and \mathcal{I} - the ideal generated by sequences convergent to x.

- If there is an \mathcal{F}^+ -branching tree T with all branches in \mathcal{I} then $\{succ_T(t) : t \in T\}$ forms a local π -network.
- If there is an \mathcal{F} -branching tree with all branches in \mathcal{I}^+ then $\{X \setminus succ_T(t) : t \in T\}$ captures convergent sequences.

- (Todorčević-Uzcátegui) Every definable countable Fréchet group is metrizable.
- (Shibakov) Every definable countable sequential group is metrizable or k_ω, i.p. has sequential order 1 or ω₁.
- (Shibakov) Every definable countable Fréchet space has a ctble π -base. (compare to...)
- (Dow) There is a countable Fréchet space with unctble π -base.

ロト ・ 同ト ・ ヨト ・ ヨト

Lemma

An ultrafilter \mathcal{U} on ω is selective if and only if for every \mathcal{U} -branching tree T there is a $U \in \mathcal{U}$ such that every infinite subset of U is a branch of T.

Theorem (Mathias)

An ultrafilter \mathcal{U} on ω is selective if and only if $\mathcal{U} \cap \mathcal{I} \neq \emptyset$ for every tall Borel ideal \mathcal{I} .

Proof.

Consider the DID for $\mathcal{F} = \mathcal{F}^+ = \mathcal{U}$ and a Borel ideal \mathcal{I} .

- If there is an \mathcal{F}^+ -branching tree \mathcal{T} with all branches in \mathcal{I} then $\mathcal{U} \cap \mathcal{I} \neq \emptyset$.
- If there is an \mathcal{F} -branching tree T with all branches in \mathcal{I}^+ then CONTRADICTION!.

(日) (同) (目) (日)

Proposition

For every ultrafilter ${\mathcal U}$ and every Borel ideal ${\mathcal I}$ there is either

• a \mathcal{U} -branching tree with all branches in \mathcal{I} , or

2 a \mathcal{U} -branching tree with all branches in \mathcal{I}^+ .

Question

- Is there an ultrafilter \mathcal{U} such that for every Borel ideal there is a \mathcal{U} -branching tree with all branches in \mathcal{I}^+ ?
- What does the dichotomy say for some well-known ideals/classes of ultrafilters?

< 回 > < 三 > < 三 >

Thank you for your attention!

- 4 同 6 4 日 6 4 日 6