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Introduction

Ramsey’s Theorem is often referred to as a higher dimensional
pigeonhole principle, but this does not mean the one
dimensional case is without interest.

Consider van der Waerden’s Theorem: For all M and K there
is an integer W (M,K ) such that if W (M,K ) =

⋃K
i=1 Pi then

there are i ≤ K and m and n such that {m + jn}Mj=1 ⊆ Pi .

This can be generalized to higher dimensions, as in the
Hales-Jewett Theorem, but this talk will mainly focus on one
dimensional generalizations.

Juris Steprāns (joint with Dilip Raghavan) Selectives and Milliken Taylor ultrafilters



Introduction

A simple consequence of van der Waerden’s Theorem is that
if N =

⋃K
i=1 Pi then there is i ≤ k such that Pi contains

arbitrarily long arithmetic progressions.

This provides the motivation for a conjecture of Graham and
Rothschild (1971) that for any partition of N into finitely
many pieces, one of the pieces contains a set that is closed
under all sums of distinct members.

The truth of this conjecture was established by Neil Hindman
and is now known as Hindman’s Theorem.

The history of the proof of this theorem may be well known,
but its review will motivate the main question of this talk.
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Introduction

A natural approach to proving Hindman’s Theorem would be
to proceed inductively to construct k0, k1, . . . kn and An such
that all sums of distinct integers from k0, k1, . . . kn belong to
one piece of the given partition and, crucially, An is an infinite
set from which it is possible to select the next integer kn+1.

And, indeed, this is how all proofs of Hindman’s Theorem
proceed, but the technical details in the original proof are
daunting.

A potential stumbling block is correctly choosing the set An.

It would help if the An could be selected from an ultrafilter.

But that ultrafilter needs to enjoy some very specific
properties.
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Introduction

In an early paper (1972) Hindman made the following
observation: The Graham and Rothschild Conjecture holds if
and only if there is an ultrafilter on N every member of which
contains an infinite subset closed under addition of finite sums.

A set A ⊆ N is closed under addition of finite sums if∑
s ∈ A for each non-empty s ∈ [A]<ℵ0 — so no repetitions.

In the same paper, he shows that 2ℵ0 = ℵ1 implies that there
is such an ultrafilter.

The ultrafilter u constructed by Hindman has the additional
property that it is an idempotent.

Namely u + u = u in the semigroup (βN,+) where ultrafilters
are thought of as finitely additive measures and the +
operation is the convolution of measures.
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Introduction

Hindman was later (1974) able to eliminate the use of the
Continuum Hypothesis with an elaborate, albeit elementary
argument, that seemingly did away with the use of the
idempotent.

Somewhat later, though, Baumgartner (1974) produced a
much simpler version of Hindman’s technical argument.

A key idea used by Baumgartner was the notion of a large set,
somewhat reminiscent of the construction of Haar measure.

As noted by Bergelson, the notion of largeness in this context
can be traced back to Poincaré’s work on celestial mechanics
and, when combined with an idempotent ultrafilter, very
quickly yields Hindman’s Theorem.
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Introduction

The key realization of Galvin and Glazer (mid 1970’s) that a
much older and more general theorem of Ellis (from 1958)
about idempotents in compact semigroups, could vastly
simplify the proof of Hindman’s Theorem points to the
important role of ultrafilters in this area of Ramsey Theory.

Even though Hindman’s construction using 2ℵ0 = ℵ1 was not,
ultimately, necessary, it played an important role in the
development of the subject and fostered future research.
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Introduction

For example, van Douwen realized that, assuming 2ℵ0 = ℵ1, it
is possible to construct an ultrafilter that satisfies a stronger
version of the property Hindman established under the same
assumptions, namely an ultrafilter with a base consisting of
subsets of N closed under finite sums.

The difference is worth highlighting: Hindman had asked only
that each member of his ultrafilter contain a set closed under
finite sums, but van Douwen is asking that this set actually
belongs to the ultrafilter.

These ultrafilters identified by van Douwen are now known as
strongly summable ultrafilters and the question of whether
the Continuum Hypothesis is needed to construct them is also
attributed to van Douwen.
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Definition

Closely related to Hindman’s Theorem is a result about the union
operation on the finite subsets of the positive integers. Let F
denote

{
a ∈ [N]<ℵ0 | a ̸= ∅

}
. If A ⊆ F consists of pairwise

disjoint sets then

FU(A) =
{⋃

a
∣∣∣ a ∈ [A]<ℵ0 & a ̸= ∅

}
.

In analogy with with the strongly summable ultrafilters, it is
possible to formulate the following definition. An ultrafilter on F
will be called a union ultrafilter if it has a base consisting of sets of
the form FU(A).
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Introduction

However, it turns out that the connection between strongly
summable ultrafilters and union ultrafilters goes beyond
analogy.

The mapping from F to N sending a to
∑

n∈a 2
n sends union

ultrafilters to strongly summable ultrafilters.

It turns out that many of the constructions of union
ultrafilters actually produce a stronger property of ultrafilters,
known as ordered-union ultrafilters, and these will be the
focus of this talk.
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Introduction

Definition

Define a partial order < on F by a < b if max(a) < min(b). For
A ⊆ F and κ ≤ ω let [A]κ< denote all sets of the form {an}n∈κ ⊆ A
such that an < an+1 for all n ∈ κ.

Definition

An ultrafilter on F will be called an ordered-union ultrafilter if it
has a base consisting of sets of the form FU(A) where A ∈ [F]ω<.

Theorem (Blass and Hindman)

If 2ℵ0 = ℵ1 there is a union ultrafilter that is not an ordered-union
ultrafilter.
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Results from the 1985 paper of Blass

Blass examined the ordered-union ultrafilters (1985) and
considered a further property.

An ordered-union ultrafilter U on F will be called stable if it
satisfies the following property: Given a sequence of sets
{An}n∈ω ⊆ U there is a sequence {bn}n∈ω ∈ [F]ω< such that
for each k there is k∗ such that FU({bn}n≥k∗) ⊆ Ak for each
k ∈ ω.

While stability resembles the P-point property, a union
ultrafilter is never a P-point because if U is a union ultrafilter
then Ek = {a ∈ F | k /∈ a} ∈ U for each k ∈ ω. But the Ek

cannot be diagonalized because if k ∈
⋃
A and FU(A) ∈ U

then there are infinitely many a ∈ A such that k ∈ A.
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Results from the 1985 paper of Blass

However, Blass showed that the Milliken-Taylor Theorem has the
following ultrafilter version.

Theorem

For an ordered-union ultrafilter H the following are equivalent:

1 H is stable;

2 if [F]2< = A0 ∪ A1 then there is j ∈ 2 and H ∈ H such that
[H]2< ⊆ Aj ;

3 if F : F → ω then there is H ∈ H such that F is canonical on
H.
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Results from the 1985 paper of Blass

Definition

For A ∈ [F]ω< define

min(A) = {min a | a ∈ A} = {min a | a ∈ FU(A)}
max(A) = {max a | a ∈ A} = {max a | a ∈ FU(A)}

and for any union ultrafilter U define

min(U) = {minA | A ∈ U }
max(U) = {maxA | A ∈ U }.

A routine arguments shows that both max(U) and min(U) are
ultrafilters. What further properties they have is a more interesting
question.
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Results from the 1985 paper of Blass

Theorem (Blass and Hindman)

If U is a union ultrafilter then max(U) and min(U) are both
P-points.

Using the theorem on equivalence of stability, Blass obtained the
following version of the preceding.

Theorem (Blass )

If U is a stable, ordered-union ultrafilter then max(U) and min(U)
are both selective ultrafilters. Moreover, max(U) ̸≡RK min(U).

The preceding theorem follows from the following result, whose
proof provides an instructive example of how union ultrafiltrs differ
from ordered-union ultrafilters.
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Results from the 1985 paper of Blass

Recall that an ultrafilter U is a Q-point if every finite-to-one
function on ω is one-to-one on a set in U . An ultrafilter is selective
if and only if it is a P-point and a Q-point.

Theorem (Blass and Hindman)

If U is an ordered-union ultrafilter then max(U) and min(U) are
both Q-points (and, hence, selective).

To see this, let F : ω → ω. Let

Z = {z ∈ F | (∀i ≤ min(z))(∀j ≥ max(z)) F (i) ̸= F (j)}

and let {zi}i∈ω be such that either FU({zi}i∈ω) ⊆ Z or
FU({zi}i∈ω) ∩ Z = ∅.
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Results from the 1985 paper of Blass

The second alternative cannot hold. Why? Since F is finite-to-one
there is some k such that F (i) ̸= F (j) if i ≤ min(z0) and
j ≤ min(zk). But then z0 ∪ zk ∈ Z .

Then U = {min(zi )}i∈ω ∈ min(U) and, furthermore, if i < j then
min(zj) > max(zi ) and so F (min(zj)) ̸= F (min(zi )). In other
words, F is one-to-one on U.

Note that this argument would not work for a union ultrafilter
because it would not be possible to conclude that
min(zj) > max(zi ) when i < j .
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Results from the 1985 paper of Blass

The preceding results havea partial converse.

Theorem (Blass)

Assuming 2ℵ0 = ℵ1 for each pair of RK inequivalent selective
ulrafilters U and V there is a stable, ordered-union ultrafilter W
such that min(W) = U and max(W) = U .

Conjecture (Blass)

The preceding result cannot be proved without the Continuum
Hypothesis (or some other extra axiom).
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Construction of the model

In order to construct a model where there are no stable,
ordered-union ultrafilters but there are at least two selective
ultrafilters the following ingredients are needed.

A partial for destroying stable, ordered-union ultrafilters.

An iteration scheme.

An argument for preserving selective ultarfilters.

Our plan is to use Shelah’s construction of a model with a unique
P-point (not just a unique selective) as a template.
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Construction of the model

For s ∈ F define s− = s \ {max(s)}.
If s ∈ F and k ≤ max(s) define A ⊆ 2P(max(s)) to be
(k , s)-large if for every σ : P(k) → 2 there is some τ ∈ A such
that σ(u) = τ(u ∪ s−) for every u ⊆ k .

Define T =
⋃

ℓ∈ω
∏

k∈ℓ 2
P(k).

If H is a stable, ordered-union ultrafilter define P(H) to
consist of all trees T ⊆ T such that for each k ∈ ω the set of
s ∈ F such that k ≤ max(s) and

(∀t ∈ 2P(max(s)) ∩ T ) {τ | t⌢τ ∈ T } is (k, s) large

belongs to H.
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Construction of the model

What does P(H) accomplish?

If G ⊆ P(H) be generic then
⋃⋂

G a function
g ∈

∏
n∈ω 2P(n).

This can be used to define a partition PG of F by
PG (s) = g(max(s))(s−).

It is shown that if FU({an}n∈ω) ⊆ P−1
G (j) for j ∈ 2 then

FU({an}n∈ω) ∈ H∗.

And this remains true even after further forcing of a specified
type.
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Construction of the model

A simpler version of this forcing plays a role in the eventual
argument, but is also serves as a useful prototype.

If k < m ∈ ω define A ⊆ 2m to be k-large if for every
σ : k → 2 there is some τ ∈ A such that σ ⊆ τ .

Define T =
⋃

ℓ∈ω
∏

k∈ℓ 2
k .

If S is a selective ultrafilter define P(S) to consist of all trees
T ⊆ T such that for each k ∈ ω the set of m > k such that

(∀t ∈ 2m ∩ T ) {τ | t⌢τ ∈ T } is k-large

belongs to S.
If G ⊆ P(S) is generic it adds PG : [ω]2 → 2.
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Construction of the model

To see that if S is selective and G ⊆ P(S) is generic then any
PG homogeneous set is in S∗ suppose that
T ⊩P(S) “PG ([Ȧ]

2) = 0”.

It can be shown that there is T ∗ ⊆ T and S ∈ S and
ψ : S → ω such that:

T ∗ ⊩P(S) “(∀n ∈ ω) [n, ψ(n)) ∩ Ȧ ̸= ∅”;
if t ∈ T and |t| ∈ S \ ψ(n) then the successors of t are
ψ(n)-large;
S ∩ (n, ψ(n)) = ∅.

Define T ∗∗ so that if n < m are consecutive elements of S
and t ∈ T ∗ and |t| = m the successor of t in T ∗∗ are all those
τ such that τ(j) = 1 if n ≤ j < ψ(n). The remaining set of
successors is no longer ψ(n)-large, but is still n-large.
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Construction of the model

So, starting with {Dξ}ξ∈ω2 satisfying ♢ω2,cof(ω1) and constructing
an iteration Pξ for ξ ∈ ω2 such that

(∀α) if 1 ⊩Pα “Dα codes an ultrafilter Dα” then Pα+1 = Pα∗P(Dα)

will achieve that all stable, ordered-union ultrafilters are destroyed.

But why are any selective ultrafilters preserved?
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Construction of the model

Definition

Suppose s ∈ F. Define I (s) = {k ∈ ω | min(s) ≤ k ≤ max(s)}.
For X ∈ FU(F) define N(X ) =

⋃
i∈ωI (X (i)) ⊆ ω.

For a stable, ordered-union ultrafilter H define C0(H) to be the set
of all selectives U such that: for every X ∈ [F]ω< such that
FU(X ) ∈ H there is Y ∈ [F]ω< such that FU(Y ) ∈ H,
FU(Y ) ⊆ FU(X ) and N(Y ) /∈ U .

Lemma

If H is a stable, ordered-union ultrafilter then Hmin /∈ C0(H) and
Hmax /∈ C0(H).
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Construction of the model

Lemma

If H is a stable, ordered-union ultrafilter and U is a selective
ultrafilter such that U ≡RK max(H) then P(H) preserves U .

Definition

Define C1(H) to be the collection of all selective U such that:
U ̸≡RKV for every selective V not in C0(H)

Theorem

If V is a selective and V /∈ C1(H) then P(H) preserves V.
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Construction of the model

The preservation of selectives depends on a number of results
about various games. For example, the following is well known.
If U is an ultrafilter then the game ⅁select(U) is played as follows:

In the nth Inning Player 1 plays An ∈ U
Player 2 then plays kn ∈ An

Player 2 wins if {kn}n∈ω ∈ U .
If H is an ultrafilter on F then the game ⅁stable(H) is played as
follows:

In the nth Inning Player 1 plays An ∈ H
Player 2 then plays sn ∈ An such that sn−1 < sn

Player 2 wins if FU({sn}n∈ω) ∈ H.
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Construction of the model

Given ultrafilters U on ω and and H on F the game
⅁select,stable(U ,H) is played:

like ⅁select(U) in even innings

like ⅁stable(H) in odd innings

to win, Player 2 must win both games.

The preservation of certain selectives depends on determining for
which pairs of ultrafilters Player 1 has no winning strategy in the
associated game.
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Construction of the model

Theorem

For any cardinal κ such that 0 ≤ κ ≤ ℵ2 it is consistent that there
are κ RK inequivalent selective ultrafilters, but no stable,
ordered-union ultrafilters.
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Questions and Remarks

Forcing with [ω]ℵ0 ordered by almost inclusion adds a selective
ultrafilter and forcing with [F]ω< ordered by almost refinement
adds a stable ordered-union ultrafilter.

Todorcevic: In the presence of large cardinals, the selective
ultrafilters are precisely those ultrafilters on ω that are generic
over L(R) for [ω]ℵ0 partially ordered by almost inclusion.

Similarly, in the presence of large cardinals, the stable,
ordered-union ultrafilters are those ultrafilters on F that are
generated from a generic filter over L(R) for [F]ω< partially
ordered by almost refinement.
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Questions and Remarks

The space corresponding to Ramsey’s theorem is the
Ellentuck space and the one corresponding to Hindman’s
theorem and the Milliken-Taylor theorem has a corresponding
Ramsey space.

Hence, in the presence of large cardinals, the selective
ultrafilters are the generic ultrafilters corresponding to the
Ellentuck space, while the stable, ordered-union ultrafilters are
the generic ultrafilters corresponding to the Milliken-Taylor
space.

The preceding theorem can be interpreted as saying that
generics on a lower Ramsey space need not pull back to the
higher Ramsey space, even if there are many of them.
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Questions and Remarks

Question

For which Ramsey spaces do generics on one imply generics on the
other?

Question

For example: Do generics one the Milliken-Taylor space yield
generics on the Hales-Jewett space? What about the Gowers
Theorem?

Question (Smythe)

Is every ordered-union ultrafilter stable?

Question

Does the existence of two RK inequivalent P-points imply the
existence of a union ultrafilter? What about selectives?
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