
Menger spaces everywhere

Lyubomyr Zdomskyy

TU Wien

KGRC seminar, April 20, 2023

1 / 25



Menger spaces and relatives

A topological space X is Menger if for every sequence ⟨Un : n ∈ ω⟩ of
open covers of X there is a sequence ⟨Vn : n ∈ ω⟩ such that
Vn ∈ [Un]

<ω and {∪Vn : n ∈ ω} is a cover of X.

A topological space X is Hurewicz if for every sequence ⟨Un : n ∈ ω⟩ of
open covers of X there is a sequence ⟨Vn : n ∈ ω⟩ such that
Vn ∈ [Un]

<ω and {∪Vn : n ∈ ω} is a γ-cover of X.
A topological space X is Scheepers if for every sequence ⟨Un : n ∈ ω⟩ of
open covers of X there is a sequence ⟨Vn : n ∈ ω⟩ such that
Vn ∈ [Un]

<ω and {∪Vn : n ∈ ω} is a ω-cover of X.

U is an ω-cover of X if ∀F ∈ [X]<ω∃U ∈ U(F ⊂ U).
U is a γ-cover of X if ∀x ∈ X∀∗U ∈ U(x ∈ U).

σ-compact → Hurewicz → Scheepers → Menger → Lindelöf.

Example: ωω is not Menger. Witness:
Un =

{
{x : x(n) = k} : k ∈ ω

}
.

Folklore Fact. For analytic sets of reals Menger is equivalent to
σ-compact.
In L there exists a co-analytic Menger subspace of ωω which is not
σ-compact.
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Examples under CH.

X ⊂ ωω is a Luzin set if |X| = ω1 and |X ∩M | ≤ ω for any
meager M .

Every Luzin set is Menger because concentrated.
X ⊂ 2ω is a Sierpinski set if |X| = ω1 and |X ∩N | ≤ ω for any
measure 0 set N . Every Sierpinski set is Hurewicz because of the
following characterization due to Scheepers

Theorem
Let P be compact. X ⊂ P is Hurewicz iff for every Gδ-set G ⊃ X
there exists a σ-compact F such that X ⊂ F ⊂ G.
Proof. (→). Let G =

⋂
n∈ω On. Set Un = {U : U ⊂ P is open and

Ū ⊂ On}. Let Vn ∈ [Un]
<ω be such that {∪Vn : n ∈ ω} is a

γ-cover of X. Then X ⊂
⋃

n∈ω
⋂

m≥n ∪Vm ⊂ G. 2

Corollary
Luzin sets are not Hurewicz.
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ZFC examples

Given x, y ∈ ωω, x ≤∗ y means {n : x(n) ≤ y(n)} is cofinite.

b is the
minimal cardinality of an unbounded subset of ωω. d is the minimal
cardinality of an unbounded subset of ωω.
|X| < b → X is Hurewicz. b- Sierpinski sets are Hurewicz.
|X| < d → X is Menger (even Scheepers). d- Luzin sets are Menger.
A set X ⊂ ωω is κ-concentrated on a countable Q, if |X| ≥ κ and
|X \ U | < κ for any open U ⊂ ωω containing Q. If κ ≤ d, then X ∪Q is
Menger.
Fact. There exists a d-concentrate set.
Proof. Fix a dominating {dα : α < d} ⊂ ωω and inductively construct
S = {sα : α < d} ⊂ ω↑ω such that sα ̸≤∗ dβ for all β ≤ α. Viewed as a
subspace of (ω + 1)↑ω, S is d-concentrated on Q = {x ∈ (ω + 1)↑ω : x is
eventually ω}. 2

Fact. There exists a b-concentrate set.
Proof. Fix an unbounded B = {bα : α < b} ⊂ ωω such that bβ ≤∗ bα for
all β ≤ α. B is b-concentrated on Q. 2

Nontrivial (Bartoszynski-Shelah): B ∪Q is Hurewicz. ”All b-concentrated
sets are Hurewicz” is independent.
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Preservation by unions

Like all reasonable covering properties, Menger, Scheeprs and
Hurewicz ones are preserved by continuous images and closed
subspaces.

If X is Menger (Scheepers, Hurewicz) and K is
compact, then so is X ×K.
Fact. Menger and Hurewicz properties are preserved by countable
unions. Hence also by products with σ-compacts.
Proof. Let X =

⋃
k∈ω Xk and ⟨Un : n ∈ ω⟩ be a sequence of open

covers of X. Let ⟨Vk
n : n ∈ ω⟩ be such that Vk

n ∈ [Un]
<ω and

{∪Vk
n : n ∈ ω} is a large (resp. γ-)cover of Xk. Set

Vn =
⋃

k≤n Vk
n. 2

Corollary
Let X be a hereditarily Lindelöf space and X be a family of its
Menger (Hurewicz) subspaces of size of size < b. Then

⋃
X is

Menger (Hurewicz) 2

Proposition
add(Menger) ∈ [min{b, g}, cf(d)] 2.
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Preservation by products

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S0, S1

whose product is not Menger.
Proof. Fix a countable dense Q ⊂ 2ω and write
2ω \Q = {xα : α < ω1}.

In the construction of a Sierpinski set by
transfinite induction at each stage α we can pick a point sα outside
of a given measure zero set Zα ⊂ 2ω. 2ω has a natural structure of
a topological group, and the sum of any two measure 1 sets is the
whole group. Choose s0α, s

1
α ∈ 2ω \ Zα such that s0α + s1α = xα

and siα + {s1−i
β : β < α} ∩Q = ∅. Set Si = {siα : α < ω1}. 2

Fact. (CH.) There are two Luzin (hence Menger) sets S0, S1 whose
product is not Menger.
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Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps.

1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf.

2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.

Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1.

Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M .

Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}

Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M :

Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .

{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2).

By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M .

Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.

U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this,

and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ ,

and hence
x ∈ U ∈ U̇G. 2

7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2 7 / 25



Menger spaces and forcing

Theorem (Essentially A. Dow)
Let (X, τ) be a Lindelöf space. Then X is Menger in V Fn(µ,2).
Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.
Proof of 1. Let U̇ be a Fn(µ, 2)-name for an open cover of X by ground
model open sets and M ≺ H(θ) be such that U̇ , X, µ, ... ∈ M . Given
any x ∈ X, consider
Dx = {p ∈ Fn(µ, 2) ∩M : ∃U ∈ τ ∩M (x ∈ U ∧ p ⊩ U ∈ U̇).}
Dx is dense in Fn(µ, 2) ∩M : Fix p ∈ Fn(µ, 2) ∩M and for every
y ∈ X find py ≤ p and y ∈ Uy ∈ τ such that py ⊩ Uy ∈ U̇ .
{Uy : y ∈ X} is an open cover of X is V , so it contains a countable
subcover {Uyn

: n ∈ ω}, as witnessed by {pn : n ∈ ω} ⊂ Fn(µ, 2). By
elementarity, we can assume {Uyn : n ∈ ω}, {pn : n ∈ ω} ∈ M , and
hence {Uyn : n ∈ ω} ∪ {pn : n ∈ ω} ⊂ M . Pick n such that x ∈ Uyn and
note that pn ∈ Dx.

Let G be Fn(µ, 2)-generic. Then H := G ∩M is Fn(µ, 2) ∩M generic.
U̇G ∩M covers X: given x ∈ X, find p ∈ Dx ∩H and U ∈ τ ∩M

witnessing this, and note that p ∈ G and p ⊩ U ∈ U̇ , and hence
x ∈ U ∈ U̇G. 2 7 / 25



Menger game

Game associated to Menger’s property:

In the n th move, I chooses
an open cover Un of X , and II responds by choosing Vn ∈ [Un]

<ω.
Player II wins if {∪Vn : n ∈ ω} covers X. Otherwise, player I wins.
A sequences ⟨Un,Vn : n ≤ γ⟩ is called a play in the Menger game,
where γ ≤ ω.

σ-compact ⇒ II↑ GM (X) ⇒ I ̸ ↑ GM (X) ⇒ Menger

Theorem (Telgarsky 197?)
Let X be a hereditarily Lindelöf regular space. If II has a winning
strategy in the Menger game on X, then X is σ-compact.
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The non-existence of a winning strategy for I

Theorem (Hurewicz 192?)
X is Menger if and only if I has no winning strategy in the Menger
game on X.
Proof. Sp-se X is Menger. Given a strategy F of I, we’ll construct
a play won by II, in which I uses F .

Wlog, F instructs I to play
with countable increasing covers. Set F (∅) = U∅ = {U⟨n⟩ : n ∈ ω}
with U⟨n⟩ ⊂ U⟨n+1⟩ for all n. Sp-se II responds with U⟨n⟩. Then
we set F ⟨U⟨n⟩⟩ = {U⟨n,k⟩ : k ∈ ω} and assume wlog
U⟨n,k⟩ ⊂ U⟨n,k+1⟩ for all k. In general, given
σ = ⟨ni : i ≤ m⟩ ∈ ωm+1, it gives rise to a play〈

U∅, U⟨n0⟩; F ⟨U⟨n0⟩⟩ =U⟨n0⟩, U⟨n0,n1⟩; . . . ,

F
〈
U⟨n0⟩, . . . , U⟨n0,...,nm−1⟩

〉
=U⟨n0,...nm−1⟩, U⟨n0,...nm−1,nm⟩ = Uσ

〉
in which I uses F , and the next response of I is
Uσ = {Uσ ˆ k : k ∈ ω} with Uσ ˆ k ⊂ Uσ ˆ ⟨k+1⟩. Wlog, Uσ = Uσ ˆ 0.
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Let On =
{
On

k =
⋂

σ∈ω↑n+1,σ(n)=k Uσ : k ∈ ω
}
.

On covers X: If not,
pick x and ⟨σk : k ∈ ω⟩ ⊂ ω↑(n+1) such that σk(n) = k and x ̸∈ Uσk

.
Let m = min

{
i : {σk(i) : k ∈ ω} is unbounded

}
. Let K ∈ [ω]ω be s.t.

τ = σk ↾ m is the same for all k ∈ K and σk0
(m) < σk1

(m) for all
k0 < k1 in K. Then Uσk↾(m+1) = Uτ ˆσk(m) for all k ∈ K, and so
{Uσk↾(m+1) : k ∈ K} covers X, being cofinal in Uτ . But
Uσk

⊃ Uσk↾(m+1), and hence {Uσk
: k ∈ K} covers X, a contradiction

Let f ∈ ω↑ω be such that
⋃

n∈ω On
f(n) = X. Look at the play

⟨U∅, U⟨f(0)⟩; . . . ,Uf↾n, Uf↾n ˆ f(n)= Uf↾(n+1); . . .⟩. Since
Uf↾(n+1) ⊃ On

f(n), this play is lost by I. 2

A space (X, τ) is called a D-space, if for every f : X → τ such that
x ∈ f(x) for all x, there exists a closed discrete D ⊂ X such that
X =

⋃
x∈D f(x).

Problem
Is every regular Lindelöf space a D-space?
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A solution :)

Let X be a regular Lindelöf space and f : X → τ a neighbourhood
assignment as above. Since X is paracompact, there exists a
refinement U of f [X] = {f(x) : x ∈ X} which is locally finite.

I.e., for every U ∈ U there exists xU ∈ X such that
U ⊂ f(xU ) ∈ τ and every x ∈ X has a neighbourhood O(x) which
intersects only finitely many U ∈ U .

Since any selection of U gives a closed discrete subset,
{xU : U ∈ U} is as required.

Is there maybe any problem in this argument?
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Menger spaces are D-spaces (Aurichi 2010).

Let f be a neighbourhood assignment. Consider the following
strategy of I in the Menger game on X. U∅ = {f(x) : x ∈ X}.
Suppose that II replies with {f(x) : x ∈ F0} for some F0 ∈ [X]<ω.

Letting U0 =
⋃
{f(x) : x ∈ F0}, I suggests

{U0} ∪ {f(x) : x ∈ X \ U0}. Suppose that II replies with
{U0} ∪ {f(x) : x ∈ F1} for some F1 ∈ [X \ U0]

<ω. Letting
U1 =

⋃
{f(x) : x ∈ F1}, I suggests

{U0, U1} ∪ {f(x) : x ∈ X \ (U0 ∪ U1)}.
Suppose that II replies with {U0, U1} ∪ {f(x) : x ∈ F2} for some
F2 ∈ [X \ (U0 ∪ U1)]

<ω. Letting U2 =
⋃
{f(x) : x ∈ F2}, I

suggests {U0, U1, U2} ∪ {f(x) : x ∈ X \ (U0 ∪ U1 ∪ U2)}, and so
on.

There is a play lost by I, which yields a sequence
⟨Un =

⋃
x∈Fn

f(x) : n ∈ ω⟩ covering X s.t. Fn+1 ⊂ X \
⋃

i≤n Un.⋃
n∈ω Fn is a closed discrete kernel of f . 2
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Mathias forcing for filters

A subset F of [ω]ω is called a filter if F contains all cofinite sets,

is
closed under finite intersections of its elements, and under taking
supersets.

MF consists of pairs ⟨s, F ⟩ such that s ∈ [ω]<ω, F ∈ F , and
max s < minF . A condition ⟨s, F ⟩ is stronger than ⟨t, U⟩ if
F ⊂ U , s is an end-extension of t, and s \ t ⊂ U .

MF is usually called Mathias forcing associated with F .

MF is a natural forcing adding a pseudointersection of F : if G is a
MF -generic, then X =

⋃
{s : ∃F ∈ F(⟨s, F ⟩ ∈ G)} is almost

contained in any F ∈ F .

Applications: killing mad families, making the ground model reals
not splitting, etc.
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MF and dominating reals

A poset P is said to add a dominating real if in V P there exists
x ∈ ωω such that y ≤∗ x for all ground model y ∈ ωω.

.
Example: Laver forcing, Hechler forcing.
Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)
d = c implies the existence of an ultrafilter F such that MF does
not add dominating reals. 2

Definition (Guzman-Hrusak-Martinez)
A filter F on ω is called Canjar if MF does not add dominating
reals.
Let B be an unbounded subset of ωω. A filter F on ω is called
B-Canjar if MF adds no reals dominating all elements of B. 2

There is a combinatorial characterization of Canjar filters by Hrusak
and Minami in terms of the filter F<ω on [ω]<ω generated by
{[F ]<ω : F ∈ F}.
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MF and dominating reals: continuation

Theorem (Brendle 1998)
1) Every σ-compact filter is Canjar.

2) (b = c). Let A be a mad family. Then for any unbounded
B = {bα : α < b} ⊂ ωω such that bα ≤∗ bβ for all α < β, there exists a
B-Canjar F ⊃ FA. 2

If an ultrafilter F is Canjar, then it is a P -filter and there is no monotone
surjection φ : ω → ω such that φ(F) is rapid. The converse is
consistently not true by a recent result of Blass, Hrusak and Verner. Its
proof relies on the following characterization
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Non-needed coherence

Theorem (Guzman-Hrusak-Martinez 2013;
Blass-Hrusak-Verner 2011 for ultrafilters)
A filter F is Canjar iff it is a coherent strong P+-filter. 2

Recall that a filter F is a coherent strong P+-filter if for every
sequence ⟨Cn : n ∈ ω⟩ of compact subsets of F+ there exists an
increasing sequence ⟨kn : n ∈ ω⟩ of integers such that if Xn ∈ Cn
for all n
and Xm ∩ [kn, kn+1) ⊂ Xn ∩ [kn, kn+1) for n < m,
then

⋃
n∈ω(Xn ∩ [kn, kn+1)) ∈ F+.

Strong P+-filters are defined by removing the coherence
requirement.
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Characterizations

Theorem (Chodounský-Repovš-Z. 2015)
MF is Canjar iff F has the Menger covering property as a subspace
of P(ω). 2

Theorem (Chodounský-Repovš-Z. 2015)
Let F be a filter. Then MF is almost ωω-bounding iff F is
B-Canjar for all unbounded B ⊂ ωω iff F is Hurewicz. 2

Recall that a poset P is almost ωω-bounding if for every P-name ḟ
for a real and q ∈ P, there exists g ∈ ωω such that for every
A ∈ [ω]ω there is qA ≤ q such that qA ⊩ g ↾ A ̸≤∗ ḟ ↾ A.
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for a real and q ∈ P, there exists g ∈ ωω such that for every
A ∈ [ω]ω there is qA ≤ q such that qA ⊩ g ↾ A ̸≤∗ ḟ ↾ A.
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Some corollaries

Corollary
Let F be an analytic filter on ω.

Then MF does not add a
dominating real iff F is σ-compact. 2

Answers a question of Hrusak and Minami. For Borel filters has
been independently proved by Guzman, Hrusak, and Martinez.

Corollary (Hrušák-Martínez 2012)
There exists in ZFC a mad family A on ω such that MF(A) adds a
dominating real (= F(A) is not Canjar). 2

Answers a question of Brendle.

Problem (Hrušák-Martínez 2012)
Does there exists in ZFC a mad family A on ω such that MF(A)

does not add dominating real (= F(A) is Canjar/Menger)?. 2

Corollary
A filter F is Canjar iff it is a strong P+-filter. 2
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Theorem (Guzman-Hrusak-Martinez 2013)
A filter F is Canjar iff it is a coherent strong P+-filter. 2

Recall that a filter F is a coherent strong P+-filter if for every
sequence ⟨Cn : n ∈ ω⟩ of compact subsets of F+ there exists an
increasing sequence ⟨kn : n ∈ ω⟩ of integers such that if Xn ∈ Cn
for all n
and Xm ∩ [kn, kn+1) ⊂ Xn ∩ [kn, kn+1) for n < m,
then

⋃
n∈ω(Xn ∩ [kn, kn+1)) ∈ F+.

Strong P+-filters are defined by removing the coherence
requirement.
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An auxiliary claim.

For n ∈ ω and q ⊂ n we set [n, q] := {A ∈ P(ω) : A ∩ n = q}.

Sets [n, q] form a standard base B for the topology of P(ω). Set
also ↑ X = {A ∈ P(ω) : A ⊃ X} for every X ⊂ ω.

Lemma
Suppose that X ⊂ P(ω) is closed under taking supersets and O is
a cover of X by sets open in P(ω). Then there exists a family
Q ⊂ [ω]<ω such that X ⊂

⋃
q∈Q ↑ q and for every q ∈ Q there

exists O′ ∈ [O]<ω covering ↑ q.
Proof. Wlog O ⊂ B. Let us fix X ∈ X and find
{[ni, qi] : i ∈ m} ⊂ O such that ↑ X ⊂

⋃
i∈m[ni, qi]. Breaking

some of the sets [ni, qi] into smaller pieces of the same form, we
may assume if necessary that for some n ∈ ω we have ni = n for
all i ∈ m. Moreover, wlog no proper subcollection of
O′ = {[n, qi] : i < m} covers ↑ X. Therefore
{qi : i < m} = {t ⊂ n : X ∩ n ⊂ t}, and consequently⋃

i<m[n, qi] =↑ (X ∩ n). Thus X ∈↑ X ⊂↑ (X ∩ n) ⊂
⋃

O′. 2
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Proof of “F is Hurewicz iff MF is almost ωω-bounding”.

Suppose that F is Hurewicz, but there exists an unbounded
X ⊂ ωω, X ∈ V , and an MF -name ġ for a function dominating X
(as forced by 1MF ).

For every x ∈ X find nx ∈ ω and a condition
⟨sx, F x⟩ forcing x(n) < ġ(n) for all n ≥ nx. Since X cannot be
covered by a countable family of bounded sets, wlog sx = s∗ and
nx = n∗ for all x ∈ X.
For every m ∈ ω consider
Sm = {s ∈ [ω]<ω : max s∗ < min s ∧ ∃Fs ∈ F (⟨s∗ ∪ s, Fs⟩ ⊩
ġ(m) = gs(m))}.
For every F ∈ F there exists s ∈ Sm such that s ⊂ F . In other
words, Um := {↑ s : s ∈ Sm} is an open cover of F . Since F is
Hurewicz, for every m there exists Vm ∈ [Um]<ω such that
{
⋃

Vm : m ∈ ω} is a γ-cover of F . Let Tm ∈ [Sm]<ω be such that
Vm = {↑ s : s ∈ Tm} and f(m) = max{gs(m) : s ∈ Tm}. We will
derive a contradiction by showing x <∗ f for each x ∈ X.
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Fix x ∈ X and l ∈ ω such that for every m ≥ l there exists
sm ∈ Tm such that F x ∈↑ sm.

Pick any m ≥ n∗, l. Since
⟨s∗, F x⟩ ⊩ x(m) < ġ(m), ⟨s∗ ∪ sm, Fsm⟩ ⊩ ġ(m) ≤ f(m), and
these two conditions are compatible, it follows that x(m) < f(m).

Now suppose that F is not Hurewicz as witnessed by a sequence
⟨Un : n ∈ ω⟩ of covers of F by sets open in P(ω). Wlog
Un = {↑ qm(n) : m ∈ ω}, where qm(n) ∈ [ω]<ω. For every F ∈ F
consider the function xF ∈ ωω, xF (n) = min {m : F ∈↑ qm(n)}.
X = {xF : F ∈ F} is unbounded.
Let G be the generic pseudointersection of F added by MF . For
every n there exists g(n) such that G \ n ∈↑ qg(n)(n). Fix F ∈ F
and find n such that G \ n ⊂ F . Then G \ n ∈↑ qg(n)(n) yields
F ∈↑ qg(n)(n), which implies xF (n) ≤ g(n). Thus g ∈ ωω is
dominating X, and therefore MF fails to preserve ground model
unbounded sets. 2
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these two conditions are compatible, it follows that x(m) < f(m).

Now suppose that F is not Hurewicz as witnessed by a sequence
⟨Un : n ∈ ω⟩ of covers of F by sets open in P(ω).

Wlog
Un = {↑ qm(n) : m ∈ ω}, where qm(n) ∈ [ω]<ω. For every F ∈ F
consider the function xF ∈ ωω, xF (n) = min {m : F ∈↑ qm(n)}.
X = {xF : F ∈ F} is unbounded.
Let G be the generic pseudointersection of F added by MF . For
every n there exists g(n) such that G \ n ∈↑ qg(n)(n). Fix F ∈ F
and find n such that G \ n ⊂ F . Then G \ n ∈↑ qg(n)(n) yields
F ∈↑ qg(n)(n), which implies xF (n) ≤ g(n). Thus g ∈ ωω is
dominating X, and therefore MF fails to preserve ground model
unbounded sets. 2

22 / 25



Fix x ∈ X and l ∈ ω such that for every m ≥ l there exists
sm ∈ Tm such that F x ∈↑ sm. Pick any m ≥ n∗, l. Since
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Questions

Question
Let A ⊂ [ω]ω be a mad family. Is there a Hurewicz filter F
containing F(A)?

What happens after adding ω1 many Cohen or
Miller reals?

A positive answer would give the consistency of s = b = ω1 < a.
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Thanks to >50 Nations helping Ukraine to survive!
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The last slide

Thank you for your attention.
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