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Corollary

Luzin sets are not Hurewicz.
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Menger (Hurewicz) subspaces of size of size < b. Then |JX is
Menger (Hurewicz) O

Proposition
add(Menger) € [min{b, g}, cf(9)] 0. 5725
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Game associated to Menger's property: In the n th move, | chooses
an open cover U,, of X , and Il responds by choosing V,, € [U,]<%.
Player Il wins if {UV,, : n € w} covers X. Otherwise, player | wins.
A sequences (Uy,, V,, : n < ) is called a play in the Menger game,
where v < w.

o-compact = 111" Gy (X) = I} Gpr(X) = Menger

Theorem (Telgarsky 1977)

Let X be a hereditarily Lindel6f regular space. If Il has a winning
strategy in the Menger game on X, then X is oc-compact.
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The non-existence of a winning strategy for |

Theorem (Hurewicz 1927)

X is Menger if and only if | has no winning strategy in the Menger
game on X.

Proof. Sp-se X is Menger. Given a strategy F' of |, we'll construct
a play won by Il, in which | uses F'.
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U C f(xy) € 7 and every x € X has a neighbourhood O(x) which
intersects only finitely many U € U.

Since any selection of U gives a closed discrete subset,
{zy : U € U} is as required.

Is there maybe any problem in this argument?
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M £ is a natural forcing adding a pseudointersection of F: if G is a
M r-generic, then X = |J{s: IF € F((s, F) € G)} is almost
contained in any F € F.

Applications: killing mad families, making the ground model reals
not splitting, etc.
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Theorem (Canjar 1988)

0 = ¢ implies the existence of an ultrafilter F such that Mix does
not add dominating reals. O

Definition (Guzman-Hrusak-Martinez)

A filter F on w is called Canjar if M does not add dominating
reals.

Let B be an unbounded subset of w*. A filter F on w is called
B-Canjar if Mz adds no reals dominating all elements of B. O
There is a combinatorial characterization of Canjar filters by Hrusak
and Minami in terms of the filter F<“ on [w]|<“ generated by
{[F]=¥: F e F}.
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sequence (C,,: n € w) of compact subsets of F there exists an
increasing sequence (ky: n € w) of integers such that if X, € C,
for all n

and X,,, N [kn, knt1) C X N [k, kny1) for n < m,

then U, e, (Xn N [kn, kng1)) € FT.

Strong P -filters are defined by removing the coherence
requirement.
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Characterizations

Theorem (Chodounsky-Repovs-Z. 2015)

M £ is Canjar iff F has the Menger covering property as a subspace
of P(w). O
Theorem (Chodounsky-Repovs-Z. 2015)

Let F be a filter. Then Mx is almost w*-bounding iff F is
B-Canjar for all unbounded B C w* iff F is Hurewicz. O

Recall that a poset P is almost w“-bounding if for every P-name f
for a real and ¢ € P, there exists g € w* such that for every
A € [w]® there is g4 < g such that galFg [ A L* f ] A.
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Corollary
A filter F is Canjar iff it is a strong P"-filter. O1s/2s



Theorem (Guzman-Hrusak-Martinez 2013)
A filter F is Canjar iff it is a strong PT-filter. O

Recall that a filter F is a strong PT-filter if for every
sequence (C,,: n € w) of compact subsets of T there exists an
increasing sequence (ky: n € w) of integers such that if X,, € C,
for all n

and

then U, c.,(Xn N [kn, kny1)) € FT.

Strong P -filters are defined by removing the coherence
requirement.

19/25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, q] form a standard base B for the topology of P(w).

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, g] form a standard base B for the topology of P(w). Set
alsot X = {A € P(w): AD X} forevery X C w.

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, g] form a standard base B for the topology of P(w). Set
alsot X = {A € P(w): AD X} forevery X C w.

Lemma
Suppose that X C P(w) is closed under taking supersets and O is
a cover of X by sets open in P(w).

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, g] form a standard base B for the topology of P(w). Set
alsot X = {A € P(w): AD X} forevery X C w.

Lemma

Suppose that X C P(w) is closed under taking supersets and O is
a cover of X by sets open in P(w). Then there exists a family

Q C [w]=¥ such that X C U, 1T q and for every q € Q there
exists O’ € |O]<¥ covering T q.

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, g] form a standard base B for the topology of P(w). Set
alsot X = {A € P(w): AD X} forevery X C w.

Lemma

Suppose that X C P(w) is closed under taking supersets and O is
a cover of X by sets open in P(w). Then there exists a family

Q C [w]=¥ such that X C U, 1T q and for every q € Q there
exists O’ € |O]<¥ covering T q.

Proof. Wlog O C B. Let us fix X € X and find

{[ni,qi]: i € m} C O such that 1 X C U, [, Gi)-

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, g] form a standard base B for the topology of P(w). Set
alsot X = {A € P(w): AD X} forevery X C w.

Lemma

Suppose that X C P(w) is closed under taking supersets and O is
a cover of X by sets open in P(w). Then there exists a family

Q C [w]=¥ such that X C U, 1T q and for every q € Q there
exists O' € [O]<¥ covering 1 q.

Proof. Wlog O C B. Let us fix X € X and find

{[ni,qi]: i € m} C O such that + X C {J,¢,, [, i]. Breaking
some of the sets [n;, ¢;] into smaller pieces of the same form, we
may assume if necessary that for some n € w we have n; = n for
all i € m.

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, g] form a standard base B for the topology of P(w). Set
alsot X = {A € P(w): AD X} forevery X C w.

Lemma

Suppose that X C P(w) is closed under taking supersets and O is
a cover of X by sets open in P(w). Then there exists a family
Q C [w]=¥ such that X C U, 1T q and for every q € Q there
exists O’ € |O]<¥ covering T q.

Proof. Wlog O C B. Let us fix X € X and find

{[ni,qi]: i € m} C O such that + X C {J,¢,, [, i]. Breaking
some of the sets [n;, ¢;] into smaller pieces of the same form, we
may assume if necessary that for some n € w we have n; = n for
all i € m. Moreover, wlog no proper subcollection of

O ={[n,q]: i < m} covers 1+ X.

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, g] form a standard base B for the topology of P(w). Set
alsot X = {A € P(w): AD X} forevery X C w.

Lemma

Suppose that X C P(w) is closed under taking supersets and O is
a cover of X by sets open in P(w). Then there exists a family
Q C [w]=¥ such that X C U, 1T q and for every q € Q there
exists O' € [O]<¥ covering 1 q.

Proof. Wlog O C B. Let us fix X € X and find

{[ni,qi]: i € m} C O such that + X C {J,¢,, [, i]. Breaking
some of the sets [n;, ¢;] into smaller pieces of the same form, we
may assume if necessary that for some n € w we have n; = n for
all i € m. Moreover, wlog no proper subcollection of

O' ={[n,q): i <m} covers T X. Therefore
{gi:i<m}={tCn: XNncCt},

20 /25



An auxiliary claim.

For n € w and ¢ C n we set [n,q] :={A € P(w): ANn = q}.
Sets [n, g] form a standard base B for the topology of P(w). Set
alsot X = {A € P(w): AD X} forevery X C w.

Lemma

Suppose that X C P(w) is closed under taking supersets and O is
a cover of X by sets open in P(w). Then there exists a family

Q C [w]=¥ such that X C U, 1T q and for every q € Q there
exists O’ € |O]<¥ covering T q.

Proof. Wlog O C B. Let us fix X € X and find

{[ni,qi]: i € m} C O such that + X C {J,¢,, [, i]. Breaking
some of the sets [n;, ¢;] into smaller pieces of the same form, we
may assume if necessary that for some n € w we have n; = n for
all i € m. Moreover, wlog no proper subcollection of
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Suppose that F is Hurewicz, but there exists an unbounded
X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1p, ).

21/25



Proof of “F is Hurewicz iff Mz is almost w“-bounding’”.

Suppose that F is Hurewicz, but there exists an unbounded

X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1, ). For every z € X find n* € w and a condition
(s, F*) forcing z(n) < g(n) for all n > n”.

21/25



Proof of “F is Hurewicz iff Mz is almost w“-bounding’”.

Suppose that F is Hurewicz, but there exists an unbounded

X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1, ). For every z € X find n* € w and a condition
(s, F*) forcing z(n) < g(n) for all n > n”. Since X cannot be
covered by a countable family of bounded sets, wlog s* = s, and
n® =n, forall x € X.

21/25



Proof of “F is Hurewicz iff Mz is almost w“-bounding’”.

Suppose that F is Hurewicz, but there exists an unbounded

X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1, ). For every z € X find n* € w and a condition
(s, F*) forcing z(n) < g(n) for all n > n”. Since X cannot be
covered by a countable family of bounded sets, wlog s* = s, and
n® =n, forall x € X.

For every m € w consider
Sm={s € [w]<¥: :maxs, <mins A IFs; € F ((s, Us, Fy) I-

g(m) = gs(m))}-

21/25



Proof of “F is Hurewicz iff Mz is almost w“-bounding’”.

Suppose that F is Hurewicz, but there exists an unbounded

X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1, ). For every z € X find n* € w and a condition
(s, F*) forcing z(n) < g(n) for all n > n”. Since X cannot be
covered by a countable family of bounded sets, wlog s* = s, and
n® =n, forall x € X.

For every m € w consider
Sm={s € [w]<¥: :maxs, <mins A IFs; € F ((s, Us, Fy) I-
g(m) = gs(m))}.

For every F' € F there exists s € S, such that s C F.

21/25



Proof of “F is Hurewicz iff Mz is almost w“-bounding’”.

Suppose that F is Hurewicz, but there exists an unbounded

X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1, ). For every z € X find n* € w and a condition
(s, F*) forcing z(n) < g(n) for all n > n”. Since X cannot be
covered by a countable family of bounded sets, wlog s* = s, and
n® =n, forall x € X.

For every m € w consider

Sm={s € [w]<¥: :maxs, <mins A IFs; € F ((s, Us, Fy) I-
§(m) = gy (m)}.

For every F' € F there exists s € Sy, such that s C F. In other
words, Uy, := {1 s: s € S;,} is an open cover of F.

21/25



Proof of “F is Hurewicz iff Mz is almost w“-bounding’”.

Suppose that F is Hurewicz, but there exists an unbounded

X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1p,). For every z € X find n* € w and a condition
(s, F*) forcing z(n) < g(n) for all n > n”. Since X cannot be
covered by a countable family of bounded sets, wlog s* = s, and
n® =n, forall x € X.

For every m € w consider

Sm={s € [w]<¥: :maxs, <mins A IFs; € F ((s, Us, Fy) I-
g(m) = gs(m))}.

For every F' € F there exists s € Sy, such that s C F. In other
words, Uy, := {1 s: s € S} is an open cover of F. Since F is
Hurewicz, for every m there exists V,,, € [Uy,]<“ such that
{UVm: m € w} is a y-cover of F.

21/25



Proof of “F is Hurewicz iff Mz is almost w“-bounding’”.

Suppose that F is Hurewicz, but there exists an unbounded

X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1p,). For every z € X find n* € w and a condition
(s, F*) forcing z(n) < g(n) for all n > n”. Since X cannot be
covered by a countable family of bounded sets, wlog s* = s, and
n® =n, forall x € X.

For every m € w consider

Sm={s € [w]<¥: :maxs, <mins A IFs; € F ((s, Us, Fy) I-
§(m) = go(m))}.

For every F' € F there exists s € Sy, such that s C F. In other
words, Uy, := {1 s: s € S} is an open cover of F. Since F is
Hurewicz, for every m there exists V,,, € [Uy,]<“ such that

{UVm: m € w} is a y-cover of F. Let Ty, € [S;]<“ be such that
Vim = {1 s:s €Ty}t and f(m) =max{gs(m): s € T, }.

21/25



Proof of “F is Hurewicz iff Mz is almost w“-bounding’”.

Suppose that F is Hurewicz, but there exists an unbounded

X Cw¥ X €V, and an Mz-name ¢ for a function dominating X
(as forced by 1p,). For every z € X find n* € w and a condition
(s, F*) forcing z(n) < g(n) for all n > n”. Since X cannot be
covered by a countable family of bounded sets, wlog s* = s, and
n® =n, forall x € X.

For every m € w consider

Sm={s € [w]<¥: :maxs, <mins A IFs; € F ((s, Us, Fy) I-
§(m) = gy (m)}.

For every F' € F there exists s € Sy, such that s C F. In other
words, Uy, := {1 s: s € S} is an open cover of F. Since F is
Hurewicz, for every m there exists V,,, € [Uy,]<“ such that

{UVm: m € w} is a y-cover of F. Let Ty, € [S;]<“ be such that
Vim ={Ts:s€Tn}and f(m) =max{gs(m): s € Tp,}. We will
derive a contradiction by showing = <* f for each z € X.
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Question

Let A C [w]¥ be a mad family. Is there a Hurewicz filter F
containing F(A)? What happens after adding wy many Cohen or
Miller reals?

A positive answer would give the consistency of s = b = w; < a.
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The last slide

Thank you for your attention.
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