Menger spaces everywhere

Lyubomyr Zdomskyy

TU Wien

KGRC seminar, April 20, 2023

イロト イポト イヨト イヨト 二臣

1/25

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a cover of X.

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that

 $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X.

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a φ -cover of X.

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a φ -cover of X.

 \mathcal{U} is an ω -cover of X if $\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}(F \subset U)$.

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a ω -cover of X. \mathcal{U} is an ω -cover of X if $\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}(F \subset U)$. \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$.

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a ω -cover of X. \mathcal{U} is an ω -cover of X if $\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}(F \subset U)$. \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$. σ -compact \rightarrow Hurewicz \rightarrow Scheepers \rightarrow Menger \rightarrow Lindelöf.

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a ω -cover of X. \mathcal{U} is an ω -cover of X if $\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}(F \subset U)$. \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$. σ -compact \rightarrow Hurewicz \rightarrow Scheepers \rightarrow Menger \rightarrow Lindelöf. Example: ω^{ω} is not Menger.

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a ω -cover of X. \mathcal{U} is an ω -cover of X if $\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}(F \subset U)$. \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$. σ -compact \rightarrow Hurewicz \rightarrow Scheepers \rightarrow Menger \rightarrow Lindelöf. Example: ω^{ω} is not Menger. Witness: $\mathcal{U}_n = \big\{ \{ x : x(n) = k \} : k \in \omega \big\}.$

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a ω -cover of X. \mathcal{U} is an ω -cover of X if $\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}(F \subset U)$. \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$. σ -compact \rightarrow Hurewicz \rightarrow Scheepers \rightarrow Menger \rightarrow Lindelöf. Example: ω^{ω} is not Menger. Witness: $\mathcal{U}_n = \big\{ \{ x : x(n) = k \} : k \in \omega \big\}.$ Folklore Fact. For analytic sets of reals Menger is equivalent to σ -compact.

A topological space X is *Menger* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a cover of X. A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. A topological space X is *Scheepers* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a ω -cover of X. \mathcal{U} is an ω -cover of X if $\forall F \in [X]^{<\omega} \exists U \in \mathcal{U}(F \subset U)$. \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$. σ -compact \rightarrow Hurewicz \rightarrow Scheepers \rightarrow Menger \rightarrow Lindelöf. Example: ω^{ω} is not Menger. Witness: $\mathcal{U}_n = \big\{ \{ x : x(n) = k \} : k \in \omega \big\}.$ Folklore Fact. For analytic sets of reals Menger is equivalent to σ -compact.

In L there exists a co-analytic Menger subspace of ω^{ω} which is not σ -compact.

 $X\subset \omega^{\omega} \text{ is a } \underline{Luzin} \text{ set if } |X|=\omega_1 \text{ and } |X\cap M|\leq \omega \text{ for any meager } M.$

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated. $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated. $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N. Every Sierpinski set is Hurewicz because

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated. $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any

measure 0 set $N. \ {\rm Every}$ Sierpinski set is Hurewicz because of the following characterization due to Scheepers

Theorem

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated.

 $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N. Every Sierpinski set is Hurewicz because of the following characterization due to Scheepers

Theorem

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

Proof. (\rightarrow) . Let $G = \bigcap_{n \in \omega} O_n$. Set $\mathcal{U}_n = \{U : U \subset P \text{ is open and } \overline{U} \subset O_n\}.$

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated.

 $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N. Every Sierpinski set is Hurewicz because of the following characterization due to Scheepers

Theorem

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

Proof. (\rightarrow). Let $G = \bigcap_{n \in \omega} O_n$. Set $\mathcal{U}_n = \{U : U \subset P \text{ is open and } \overline{U} \subset O_n\}$. Let $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ be such that $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated.

 $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N. Every Sierpinski set is Hurewicz because of the following characterization due to Scheepers

Theorem

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

 $\begin{array}{l} \text{Proof.} \ (\rightarrow). \ \text{Let} \ G = \bigcap_{n \in \omega} O_n. \ \text{Set} \ \mathcal{U}_n = \{U : U \subset P \ \text{is open and} \\ \bar{U} \subset O_n \}. \ \ \text{Let} \ \mathcal{V}_n \in [\mathcal{U}_n]^{<\omega} \ \text{be such that} \ \{\cup \mathcal{V}_n : n \in \omega\} \ \text{is a} \\ \gamma \text{-cover of} \ X. \ \ \text{Then} \ X \subset \bigcup_{n \in \omega} \bigcap_{m \geq n} \cup \mathcal{V}_m \subset G. \end{array}$

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated.

 $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N. Every Sierpinski set is Hurewicz because of the following characterization due to Scheepers

Theorem

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

Proof. (\rightarrow). Let $G = \bigcap_{n \in \omega} O_n$. Set $\mathcal{U}_n = \{U : U \subset P \text{ is open and } \overline{U} \subset O_n\}$. Let $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ be such that $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X. Then $X \subset \bigcup_{n \in \omega} \bigcap_{m \ge n} \cup \mathcal{V}_m \subset G$.

Corollary

Luzin sets are not Hurewicz.

Given $x,y\in \omega^\omega$, $x\leq^* y$ means $\{n:x(n)\leq y(n)\}$ is cofinite.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. b is the minimal cardinality of an unbounded subset of ω^{ω} .

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} . $|X| < \mathfrak{b} \to X$ is Hurewicz.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. b is the minimal cardinality of an unbounded subset of ω^{ω} . d is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \rightarrow X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \to X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz. $|X| < \mathfrak{d} \to X$ is Menger (even Scheepers).

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \to X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz. $|X| < \mathfrak{d} \to X$ is Menger (even Scheepers). \mathfrak{d} - Luzin sets are Menger. A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

$$\begin{split} |X| < \mathfrak{b} \to X \text{ is Hurewicz. } \mathfrak{b}\text{-} \operatorname{Sierpinski sets are Hurewicz.} \\ |X| < \mathfrak{d} \to X \text{ is Menger (even Scheepers). } \mathfrak{d}\text{-} \operatorname{Luzin sets are Menger.} \\ \mathsf{A} \operatorname{set} X \subset \omega^{\omega} \text{ is } \kappa\text{-concentrated on a countable } Q, \text{ if } |X| \geq \kappa \text{ and} \\ |X \setminus U| < \kappa \text{ for any open } U \subset \omega^{\omega} \text{ containing } Q. \text{ If } \kappa \leq \mathfrak{d}, \text{ then } X \cup Q \text{ is Menger.} \end{split}$$

4 / 25

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \rightarrow X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz.

 $|X| < \mathfrak{d} \rightarrow X$ is Menger (even Scheepers). \mathfrak{d} - Luzin sets are Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \rightarrow X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz.

 $|X| < \mathfrak{d} \rightarrow X$ is Menger (even Scheepers). \mathfrak{d} - Luzin sets are Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \rightarrow X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz.

 $|X| < \mathfrak{d} \rightarrow X$ is Menger (even Scheepers). \mathfrak{d} - Luzin sets are Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$.

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \rightarrow X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz.

 $|X| < \mathfrak{d} \rightarrow X$ is Menger (even Scheepers). \mathfrak{d} - Luzin sets are Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$.

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \rightarrow X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz.

 $|X| < \mathfrak{d} \rightarrow X$ is Menger (even Scheepers). \mathfrak{d} - Luzin sets are Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$.

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*.

Nontrivial (Bartoszynski-Shelah): $B \cup Q$ is Hurewicz.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. **b** is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of an unbounded subset of ω^{ω} .

 $|X| < \mathfrak{b} \rightarrow X$ is Hurewicz. \mathfrak{b} - Sierpinski sets are Hurewicz.

 $|X| < \mathfrak{d} \rightarrow X$ is Menger (even Scheepers). \mathfrak{d} - Luzin sets are Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$.

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*. \Box Nontrivial (Bartoszynski-Shelah): $B \cup Q$ is Hurewicz. "All \mathfrak{b} -concentrated

sets are Hurewicz" is independent.

Preservation by unions

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces.

Preservation by unions

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.
Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.

Fact. Menger and Hurewicz properties are preserved by countable unions.

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.

Fact. Menger and Hurewicz properties are preserved by countable unions. Hence also by products with σ -compacts.

Proof. Let $X = \bigcup_{k \in \omega} X_k$ and $\langle \mathcal{U}_n : n \in \omega \rangle$ be a sequence of open covers of X.

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.

Fact. Menger and Hurewicz properties are preserved by countable unions. Hence also by products with σ -compacts.

Proof. Let $X = \bigcup_{k \in \omega} X_k$ and $\langle \mathcal{U}_n : n \in \omega \rangle$ be a sequence of open covers of X. Let $\langle \mathcal{V}_n^k : n \in \omega \rangle$ be such that $\mathcal{V}_n^k \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n^k : n \in \omega \}$ is a large (resp. γ -)cover of X_k .

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.

Fact. Menger and Hurewicz properties are preserved by countable unions. Hence also by products with σ -compacts.

Proof. Let $X = \bigcup_{k \in \omega} X_k$ and $\langle \mathcal{U}_n : n \in \omega \rangle$ be a sequence of open covers of X. Let $\langle \mathcal{V}_n^k : n \in \omega \rangle$ be such that $\mathcal{V}_n^k \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n^k : n \in \omega \}$ is a large (resp. γ -)cover of X_k . Set $\mathcal{V}_n = \bigcup_{k \leq n} \mathcal{V}_n^k$.

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.

Fact. Menger and Hurewicz properties are preserved by countable unions. Hence also by products with σ -compacts.

Proof. Let $X = \bigcup_{k \in \omega} X_k$ and $\langle \mathcal{U}_n : n \in \omega \rangle$ be a sequence of open covers of X. Let $\langle \mathcal{V}_n^k : n \in \omega \rangle$ be such that $\mathcal{V}_n^k \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n^k : n \in \omega \}$ is a large (resp. γ -)cover of X_k . Set $\mathcal{V}_n = \bigcup_{k \leq n} \mathcal{V}_n^k$.

Corollary

Let X be a hereditarily Lindelöf space and \mathcal{X} be a family of its Menger (Hurewicz) subspaces of size of size $< \mathfrak{b}$.

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.

Fact. Menger and Hurewicz properties are preserved by countable unions. Hence also by products with σ -compacts.

Proof. Let $X = \bigcup_{k \in \omega} X_k$ and $\langle \mathcal{U}_n : n \in \omega \rangle$ be a sequence of open covers of X. Let $\langle \mathcal{V}_n^k : n \in \omega \rangle$ be such that $\mathcal{V}_n^k \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n^k : n \in \omega \}$ is a large (resp. γ -)cover of X_k . Set $\mathcal{V}_n = \bigcup_{k \leq n} \mathcal{V}_n^k$.

Corollary

Let X be a hereditarily Lindelöf space and \mathcal{X} be a family of its Menger (Hurewicz) subspaces of size of size $< \mathfrak{b}$. Then $\bigcup \mathcal{X}$ is Menger (Hurewicz)

Like all reasonable covering properties, Menger, Scheeprs and Hurewicz ones are preserved by continuous images and closed subspaces. If X is Menger (Scheepers, Hurewicz) and K is compact, then so is $X \times K$.

Fact. Menger and Hurewicz properties are preserved by countable unions. Hence also by products with σ -compacts.

Proof. Let $X = \bigcup_{k \in \omega} X_k$ and $\langle \mathcal{U}_n : n \in \omega \rangle$ be a sequence of open covers of X. Let $\langle \mathcal{V}_n^k : n \in \omega \rangle$ be such that $\mathcal{V}_n^k \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n^k : n \in \omega \}$ is a large (resp. γ -)cover of X_k . Set $\mathcal{V}_n = \bigcup_{k \leq n} \mathcal{V}_n^k$.

Corollary

Let X be a hereditarily Lindelöf space and \mathcal{X} be a family of its Menger (Hurewicz) subspaces of size of size $< \mathfrak{b}$. Then $\bigcup \mathcal{X}$ is Menger (Hurewicz)

Proposition

 $\operatorname{add}(\operatorname{Menger}) \in [\min\{\mathfrak{b},\mathfrak{g}\},\operatorname{cf}(\mathfrak{d})]$

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write $2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}.$

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write $2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}$. In the construction of a Sierpinski set by transfinite induction at each stage α we can pick a point s_{α} outside of a given measure zero set $Z_{\alpha} \subset 2^{\omega}$.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}$. In the construction of a Sierpinski set by transfinite induction at each stage α we can pick a point s_{α} outside of a given measure zero set $Z_{\alpha} \subset 2^{\omega}$. 2^{ω} has a natural structure of a topological group, and the sum of any two measure 1 sets is the whole group.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write $2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}$. In the construction of a Sierpinski set by transfinite induction at each stage α we can pick a point s_{α} outside of a given measure zero set $Z_{\alpha} \subset 2^{\omega}$. 2^{ω} has a natural structure of a topological group, and the sum of any two measure 1 sets is the whole group. Choose $s_{\alpha}^0, s_{\alpha}^1 \in 2^{\omega} \setminus Z_{\alpha}$ such that $s_{\alpha}^0 + s_{\alpha}^1 = x_{\alpha}$ and $s_{\alpha}^i + \{s_{\beta}^{1-i} : \beta < \alpha\} \cap Q = \emptyset$.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $\begin{array}{l} 2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}. \quad \text{In the construction of a Sierpinski set by} \\ \text{transfinite induction at each stage } \alpha \text{ we can pick a point } s_{\alpha} \text{ outside} \\ \text{of a given measure zero set } Z_{\alpha} \subset 2^{\omega}. \ 2^{\omega} \text{ has a natural structure of} \\ \text{a topological group, and the sum of any two measure 1 sets is the} \\ \text{whole group. Choose } s_{\alpha}^0, s_{\alpha}^1 \in 2^{\omega} \setminus Z_{\alpha} \text{ such that } s_{\alpha}^0 + s_{\alpha}^1 = x_{\alpha} \\ \text{and } s_{\alpha}^i + \{s_{\beta}^{1-i} : \beta < \alpha\} \cap Q = \emptyset. \text{ Set } S_i = \{s_{\alpha}^i : \alpha < \omega_1\}. \end{array}$

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $\begin{array}{l} 2^{\omega} \setminus Q = \{x_{\alpha}: \alpha < \omega_1\}. \quad \text{In the construction of a Sierpinski set by} \\ \text{transfinite induction at each stage } \alpha \text{ we can pick a point } s_{\alpha} \text{ outside} \\ \text{of a given measure zero set } Z_{\alpha} \subset 2^{\omega}. \ 2^{\omega} \text{ has a natural structure of} \\ \text{a topological group, and the sum of any two measure 1 sets is the} \\ \text{whole group. Choose } s_{\alpha}^0, s_{\alpha}^1 \in 2^{\omega} \setminus Z_{\alpha} \text{ such that } s_{\alpha}^0 + s_{\alpha}^1 = x_{\alpha} \\ \text{and } s_{\alpha}^i + \{s_{\beta}^{1-i}: \beta < \alpha\} \cap Q = \emptyset. \text{ Set } S_i = \{s_{\alpha}^i: \alpha < \omega_1\}. \end{array}$

Fact. (CH.) There are two Luzin (hence Menger) sets S_0, S_1 whose product is not Menger.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger. Proof of 1.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger. Proof of 1. Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\dot{\mathcal{U}}, X, \mu, ... \in M$.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger. Proof of 1. Let $\dot{\mathcal{U}}$ be a $Fn(\mu,2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\dot{\mathcal{U}}, X, \mu, ... \in M$. Given any $x \in X$, consider

 $D_x = \{ p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}). \}$

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger. Proof of 1. Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\dot{\mathcal{U}}, X, \mu, ... \in M$. Given any $x \in X$, consider $D_x = \{p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}).\}$ D_x is dense in $Fn(\mu, 2) \cap M$:

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger. Proof of 1. Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\dot{\mathcal{U}}, X, \mu, \ldots \in M$. Given any $x \in X$, consider $D_x = \{p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}).\}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \dot{\mathcal{U}}$.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger. Proof of 1. Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\mathcal{U}, X, \mu, \ldots \in M$. Given any $x \in X$, consider $D_x = \{p \in Fn(\mu, 2) \cap M : \exists \mathcal{U} \in \tau \cap M \ (x \in \mathcal{U} \land p \Vdash \mathcal{U} \in \dot{\mathcal{U}}).\}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \dot{\mathcal{U}}.$ $\{U_y : y \in X\}$ is an open cover of X is V, so it contains a countable subcover $\{U_{y_n} : n \in \omega\}$, as witnessed by $\{p_n : n \in \omega\} \subset Fn(\mu, 2).$

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. **Proof.** Two steps. 1. X remains Lindelöf. 2. X becomes Menger. *Proof of 1.* Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\mathcal{U}, X, \mu, ... \in M$. Given any $x \in X$, consider $D_x = \{ p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}). \}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \mathcal{U}$. $\{U_u : y \in X\}$ is an open cover of X is V, so it contains a countable subcover $\{U_{\mu_n} : n \in \omega\}$, as witnessed by $\{p_n : n \in \omega\} \subset Fn(\mu, 2)$. By elementarity, we can assume $\{U_{y_n} : n \in \omega\}, \{p_n : n \in \omega\} \in M$, and hence $\{U_{u_n} : n \in \omega\} \cup \{p_n : n \in \omega\} \subset M$.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. **Proof.** Two steps. 1. X remains Lindelöf. 2. X becomes Menger. *Proof of 1.* Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\mathcal{U}, X, \mu, ... \in M$. Given any $x \in X$, consider $D_x = \{ p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}). \}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \mathcal{U}$. $\{U_u : y \in X\}$ is an open cover of X is V, so it contains a countable subcover $\{U_{\mu_n} : n \in \omega\}$, as witnessed by $\{p_n : n \in \omega\} \subset Fn(\mu, 2)$. By elementarity, we can assume $\{U_{y_n} : n \in \omega\}, \{p_n : n \in \omega\} \in M$, and hence $\{U_{u_n} : n \in \omega\} \cup \{p_n : n \in \omega\} \subset M$. Pick n such that $x \in U_{u_n}$ and note that $p_n \in D_x$.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. **Proof.** Two steps. 1. X remains Lindelöf. 2. X becomes Menger. *Proof of 1.* Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\mathcal{U}, X, \mu, ... \in M$. Given any $x \in X$, consider $D_x = \{ p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}) \}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \mathcal{U}$. $\{U_u : y \in X\}$ is an open cover of X is V, so it contains a countable subcover $\{U_{\mu_n} : n \in \omega\}$, as witnessed by $\{p_n : n \in \omega\} \subset Fn(\mu, 2)$. By elementarity, we can assume $\{U_{y_n} : n \in \omega\}, \{p_n : n \in \omega\} \in M$, and hence $\{U_{y_n} : n \in \omega\} \cup \{p_n : n \in \omega\} \subset M$. Pick n such that $x \in U_{y_n}$ and note that $p_n \in D_x$.

Let G be $Fn(\mu, 2)$ -generic. Then $H := G \cap M$ is $Fn(\mu, 2) \cap M$ generic.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. **Proof.** Two steps. 1. X remains Lindelöf. 2. X becomes Menger. *Proof of 1.* Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\mathcal{U}, X, \mu, ... \in M$. Given any $x \in X$, consider $D_x = \{ p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}) \}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \mathcal{U}$. $\{U_u : y \in X\}$ is an open cover of X is V, so it contains a countable subcover $\{U_{\mu_n} : n \in \omega\}$, as witnessed by $\{p_n : n \in \omega\} \subset Fn(\mu, 2)$. By elementarity, we can assume $\{U_{y_n} : n \in \omega\}, \{p_n : n \in \omega\} \in M$, and hence $\{U_{u_n} : n \in \omega\} \cup \{p_n : n \in \omega\} \subset M$. Pick n such that $x \in U_{u_n}$ and note that $p_n \in D_x$.

Let G be $Fn(\mu, 2)$ -generic. Then $H := G \cap M$ is $Fn(\mu, 2) \cap M$ generic. $\dot{\mathcal{U}}^G \cap M$ covers X: given $x \in X$, find $p \in D_x \cap H$ and $U \in \tau \cap M$ witnessing this,

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. **Proof.** Two steps. 1. X remains Lindelöf. 2. X becomes Menger. *Proof of 1.* Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\mathcal{U}, X, \mu, ... \in M$. Given any $x \in X$, consider $D_x = \{ p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}) \}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \mathcal{U}$. $\{U_u : y \in X\}$ is an open cover of X is V, so it contains a countable subcover $\{U_{\mu_n} : n \in \omega\}$, as witnessed by $\{p_n : n \in \omega\} \subset Fn(\mu, 2)$. By elementarity, we can assume $\{U_{y_n} : n \in \omega\}, \{p_n : n \in \omega\} \in M$, and hence $\{U_{y_n} : n \in \omega\} \cup \{p_n : n \in \omega\} \subset M$. Pick n such that $x \in U_{y_n}$ and note that $p_n \in D_x$.

Let G be $Fn(\mu, 2)$ -generic. Then $H := G \cap M$ is $Fn(\mu, 2) \cap M$ generic. $\dot{\mathcal{U}}^G \cap M$ covers X: given $x \in X$, find $p \in D_x \cap H$ and $U \in \tau \cap M$ witnessing this, and note that $p \in G$ and $p \Vdash U \in \dot{\mathcal{U}}$,

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. **Proof.** Two steps. 1. X remains Lindelöf. 2. X becomes Menger. *Proof of 1.* Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\mathcal{U}, X, \mu, ... \in M$. Given any $x \in X$, consider $D_x = \{ p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}). \}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \mathcal{U}$. $\{U_u : y \in X\}$ is an open cover of X is V, so it contains a countable subcover $\{U_{\mu_n} : n \in \omega\}$, as witnessed by $\{p_n : n \in \omega\} \subset Fn(\mu, 2)$. By elementarity, we can assume $\{U_{y_n} : n \in \omega\}, \{p_n : n \in \omega\} \in M$, and hence $\{U_{y_n} : n \in \omega\} \cup \{p_n : n \in \omega\} \subset M$. Pick n such that $x \in U_{y_n}$ and note that $p_n \in D_x$.

Let G be $Fn(\mu, 2)$ -generic. Then $H := G \cap M$ is $Fn(\mu, 2) \cap M$ generic. $\dot{\mathcal{U}}^G \cap M$ covers X: given $x \in X$, find $p \in D_x \cap H$ and $U \in \tau \cap M$ witnessing this, and note that $p \in G$ and $p \Vdash U \in \dot{\mathcal{U}}$, and hence $x \in U \in \dot{\mathcal{U}}^G$.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. **Proof.** Two steps. 1. X remains Lindelöf. 2. X becomes Menger. *Proof of 1.* Let $\dot{\mathcal{U}}$ be a $Fn(\mu, 2)$ -name for an open cover of X by ground model open sets and $M \prec H(\theta)$ be such that $\mathcal{U}, X, \mu, ... \in M$. Given any $x \in X$, consider $D_x = \{ p \in Fn(\mu, 2) \cap M : \exists U \in \tau \cap M \ (x \in U \land p \Vdash U \in \dot{\mathcal{U}}). \}$ D_x is dense in $Fn(\mu, 2) \cap M$: Fix $p \in Fn(\mu, 2) \cap M$ and for every $y \in X$ find $p_y \leq p$ and $y \in U_y \in \tau$ such that $p_y \Vdash U_y \in \mathcal{U}$. $\{U_u : y \in X\}$ is an open cover of X is V, so it contains a countable subcover $\{U_{\mu_n} : n \in \omega\}$, as witnessed by $\{p_n : n \in \omega\} \subset Fn(\mu, 2)$. By elementarity, we can assume $\{U_{y_n} : n \in \omega\}, \{p_n : n \in \omega\} \in M$, and hence $\{U_{y_n} : n \in \omega\} \cup \{p_n : n \in \omega\} \subset M$. Pick n such that $x \in U_{y_n}$ and note that $p_n \in D_x$.

Let G be $Fn(\mu, 2)$ -generic. Then $H := G \cap M$ is $Fn(\mu, 2) \cap M$ generic. $\dot{\mathcal{U}}^G \cap M$ covers X: given $x \in X$, find $p \in D_x \cap H$ and $U \in \tau \cap M$ witnessing this, and note that $p \in G$ and $p \Vdash U \in \dot{\mathcal{U}}$, and hence $x \in U \in \dot{\mathcal{U}}^G$. Game associated to Menger's property:

Game associated to Menger's property: In the *n* th move, I chooses an open cover \mathcal{U}_n of *X*, and II responds by choosing $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$.

Game associated to Menger's property: In the *n* th move, I chooses an open cover \mathcal{U}_n of *X*, and II responds by choosing $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$. Player II wins if $\{\cup \mathcal{V}_n : n \in \omega\}$ covers *X*. Game associated to Menger's property: In the *n* th move, I chooses an open cover \mathcal{U}_n of *X*, and II responds by choosing $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$. Player II wins if $\{\cup \mathcal{V}_n : n \in \omega\}$ covers *X*. Otherwise, player I wins. Game associated to Menger's property: In the n th move, I chooses an open cover \mathcal{U}_n of X, and II responds by choosing $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$. Player II wins if $\{\cup \mathcal{V}_n : n \in \omega\}$ covers X. Otherwise, player I wins. A sequences $\langle \mathcal{U}_n, \mathcal{V}_n : n \leq \gamma \rangle$ is called a *play* in the Menger game, where $\gamma \leq \omega$. Game associated to Menger's property: In the n th move, I chooses an open cover \mathcal{U}_n of X, and II responds by choosing $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$. Player II wins if $\{\cup \mathcal{V}_n : n \in \omega\}$ covers X. Otherwise, player I wins. A sequences $\langle \mathcal{U}_n, \mathcal{V}_n : n \leq \gamma \rangle$ is called a *play* in the Menger game, where $\gamma \leq \omega$.

 $\sigma\text{-compact} \Rightarrow \mathsf{II}\uparrow G_M(X) \Rightarrow \mathsf{I} \Uparrow G_M(X) \Rightarrow \mathsf{Menger}$

Game associated to Menger's property: In the n th move, I chooses an open cover \mathcal{U}_n of X, and II responds by choosing $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$. Player II wins if $\{\cup \mathcal{V}_n : n \in \omega\}$ covers X. Otherwise, player I wins. A sequences $\langle \mathcal{U}_n, \mathcal{V}_n : n \leq \gamma \rangle$ is called a *play* in the Menger game, where $\gamma \leq \omega$.

$$\sigma$$
-compact $\Rightarrow \mathsf{II}\uparrow G_M(X) \Rightarrow \mathsf{I} \uparrow G_M(X) \Rightarrow \mathsf{Menger}$

Theorem (Telgarsky 197?)

Let X be a hereditarily Lindelöf regular space. If II has a winning strategy in the Menger game on X, then X is σ -compact.
X is Menger if and only if I has no winning strategy in the Menger game on X.

Proof. Sp-se X is Menger. Given a strategy F of I, we'll construct a play won by II, in which I uses F.

X is Menger if and only if I has no winning strategy in the Menger game on X.

Proof. Sp-se X is Menger. Given a strategy F of I, we'll construct a play won by II, in which I uses F. Wlog, F instructs I to play with countable increasing covers.

X is Menger if and only if I has no winning strategy in the Menger game on X.

Proof. Sp-se X is Menger. Given a strategy F of I, we'll construct a play won by II, in which I uses F. Wlog, F instructs I to play with countable increasing covers. Set $F(\emptyset) = \mathcal{U}_{\emptyset} = \{U_{\langle n \rangle} : n \in \omega\}$ with $U_{\langle n \rangle} \subset U_{\langle n+1 \rangle}$ for all n.

X is Menger if and only if I has no winning strategy in the Menger game on X.

Proof. Sp-se X is Menger. Given a strategy F of I, we'll construct a play won by II, in which I uses F. Wlog, F instructs I to play with countable increasing covers. Set $F(\emptyset) = \mathcal{U}_{\emptyset} = \{U_{\langle n \rangle} : n \in \omega\}$ with $U_{\langle n \rangle} \subset U_{\langle n+1 \rangle}$ for all n. Sp-se II responds with $U_{\langle n \rangle}$. Then we set $F\langle U_{\langle n \rangle} \rangle = \{U_{\langle n,k \rangle} : k \in \omega\}$ and assume wlog $U_{\langle n,k \rangle} \subset U_{\langle n,k+1 \rangle}$ for all k.

X is Menger if and only if I has no winning strategy in the Menger game on X.

Proof. Sp-se X is Menger. Given a strategy F of I, we'll construct a play won by II, in which I uses F. Wlog, F instructs I to play with countable increasing covers. Set $F(\emptyset) = \mathcal{U}_{\emptyset} = \{U_{\langle n \rangle} : n \in \omega\}$ with $U_{\langle n \rangle} \subset U_{\langle n+1 \rangle}$ for all n. Sp-se II responds with $U_{\langle n \rangle}$. Then we set $F\langle U_{\langle n \rangle} \rangle = \{U_{\langle n,k \rangle} : k \in \omega\}$ and assume wlog $U_{\langle n,k \rangle} \subset U_{\langle n,k+1 \rangle}$ for all k. In general, given $\sigma = \langle n_i : i \leq m \rangle \in \omega^{m+1}$, it gives rise to a play

$$\langle \mathcal{U}_{\emptyset}, U_{\langle n_0 \rangle}; F \langle U_{\langle n_0 \rangle} \rangle = \mathcal{U}_{\langle n_0 \rangle}, U_{\langle n_0, n_1 \rangle}; \dots,$$

$$F \langle U_{\langle n_0 \rangle}, \dots, U_{\langle n_0, \dots, n_{m-1} \rangle} \rangle = \mathcal{U}_{\langle n_0, \dots, n_{m-1} \rangle}, U_{\langle n_0, \dots, n_{m-1}, n_m \rangle} = U_{\sigma} \rangle$$

in which I uses F, and the next response of I is $\mathcal{U}_{\sigma \ k} : k \in \omega$ with $U_{\sigma \ k} \subset U_{\sigma \ k+1}$, where $\mathcal{U}_{\sigma \ k} : \mathcal{U}_{\sigma \ k} = \{U_{\sigma \ k} : k \in \omega\}$ with $U_{\sigma \ k} \subset U_{\sigma \ k+1}$.

X is Menger if and only if I has no winning strategy in the Menger game on X.

Proof. Sp-se X is Menger. Given a strategy F of I, we'll construct a play won by II, in which I uses F. Wlog, F instructs I to play with countable increasing covers. Set $F(\emptyset) = \mathcal{U}_{\emptyset} = \{U_{\langle n \rangle} : n \in \omega\}$ with $U_{\langle n \rangle} \subset U_{\langle n+1 \rangle}$ for all n. Sp-se II responds with $U_{\langle n \rangle}$. Then we set $F\langle U_{\langle n \rangle} \rangle = \{U_{\langle n,k \rangle} : k \in \omega\}$ and assume wlog $U_{\langle n,k \rangle} \subset U_{\langle n,k+1 \rangle}$ for all k. In general, given $\sigma = \langle n_i : i \leq m \rangle \in \omega^{m+1}$, it gives rise to a play

$$\langle \mathcal{U}_{\emptyset}, U_{\langle n_0 \rangle}; F \langle U_{\langle n_0 \rangle} \rangle = \mathcal{U}_{\langle n_0 \rangle}, U_{\langle n_0, n_1 \rangle}; \dots,$$

$$F \langle U_{\langle n_0 \rangle}, \dots, U_{\langle n_0, \dots, n_{m-1} \rangle} \rangle = \mathcal{U}_{\langle n_0, \dots, n_{m-1} \rangle}, U_{\langle n_0, \dots, n_{m-1}, n_m \rangle} = U_{\sigma} \rangle$$

in which I uses F, and the next response of I is $\mathcal{U}_{\sigma} = \{U_{\sigma \ k} : k \in \omega\} \text{ with } U_{\sigma \ k} \subset U_{\sigma \ (k+1)} \bigcup_{k=0}^{\infty} \bigcup_{k=0}^{\infty} U_{\sigma \ k} = U_{\sigma \ k} \bigcup_{k=0}^{\infty} \bigcup_{k=0}^{\infty} U_{\sigma \ k} \cup_{k=0}^{\infty} \bigcup_{k=0}^{\infty} \bigcup_{k=0}$

Let
$$\mathcal{O}_n = \{ O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega \}.$$

Let
$$\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$$
. \mathcal{O}_n covers X:

Let
$$\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$$
. \mathcal{O}_n covers X : If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$.

Let $\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min \{i : \{\sigma_k(i) : k \in \omega\}$ is unbounded}. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Let $\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min \{i : \{\sigma_k(i) : k \in \omega\}$ is unbounded}. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Then $U_{\sigma_k \upharpoonright (m+1)} = U_{\tau} \land \sigma_k(m)$ for all $k \in K$, and so $\{U_{\sigma_k \upharpoonright (m+1)} : k \in K\}$ covers X, being cofinal in \mathcal{U}_{τ} . Let $\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min \{i : \{\sigma_k(i) : k \in \omega\}$ is unbounded}. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Then $U_{\sigma_k \upharpoonright (m+1)} = U_{\tau} \land \sigma_{\kappa}(m)$ for all $k \in K$, and so $\{U_{\sigma_k \upharpoonright (m+1)} : k \in K\}$ covers X, being cofinal in \mathcal{U}_{τ} . But $U_{\sigma_k \upharpoonright (m+1)}$, and hence $\{U_{\sigma_k} : k \in K\}$ covers X, a contradiction Let $\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min \{i : \{\sigma_k(i) : k \in \omega\}$ is unbounded}. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Then $U_{\sigma_k \upharpoonright (m+1)} = U_{\tau \land \sigma_k(m)}$ for all $k \in K$, and so $\{U_{\sigma_k \upharpoonright (m+1)} : k \in K\}$ covers X, being cofinal in \mathcal{U}_{τ} . But $U_{\sigma_k} \supset U_{\sigma_k \upharpoonright (m+1)}$, and hence $\{U_{\sigma_k} : k \in K\}$ covers X, a contradiction Let $f \in \omega^{\uparrow \omega}$ be such that $\bigcup_{n \in \omega} O_{f(n)}^n = X$. Let $\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min \{i : \{\sigma_k(i) : k \in \omega\}$ is unbounded}. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Then $U_{\sigma_k \upharpoonright (m+1)} = U_{\tau \land \sigma_k(m)}$ for all $k \in K$, and so $\{U_{\sigma_k \upharpoonright (m+1)} : k \in K\}$ covers X, being cofinal in \mathcal{U}_{τ} . But $U_{\sigma_k} \supset U_{\sigma_k \upharpoonright (m+1)}$, and hence $\{U_{\sigma_k} : k \in K\}$ covers X, a contradiction Let $f \in \omega^{\uparrow \omega}$ be such that $\bigcup_{n \in \omega} O_{f(n)}^n = X$. Look at the play $\langle \mathcal{U}_{\emptyset}, U_{\langle f(0) \rangle}; \dots, \mathcal{U}_{f \upharpoonright n}, U_{f \upharpoonright n \land f(n)} = U_{f \upharpoonright (n+1)}; \dots \rangle$. Let $\mathcal{O}_n = \left\{ O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n) = k} U_\sigma : k \in \omega \right\}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min \left\{ i : \{\sigma_k(i) : k \in \omega \}$ is unbounded $\right\}$. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Then $U_{\sigma_k \upharpoonright (m+1)} = U_{\tau} \circ_{\sigma_k(m)}$ for all $k \in K$, and so $\{U_{\sigma_k \upharpoonright (m+1)} : k \in K\}$ covers X, being cofinal in \mathcal{U}_{τ} . But $U_{\sigma_k} \supset U_{\sigma_k \upharpoonright (m+1)}$, and hence $\{U_{\sigma_k} : k \in K\}$ covers X, a contradiction Let $f \in \omega^{\uparrow \omega}$ be such that $\bigcup_{n \in \omega} O_{f(n)}^n = X$. Look at the play $\langle \mathcal{U}_{\emptyset}, \mathcal{U}_{(f(0))}; \dots, \mathcal{U}_{f \upharpoonright n}, \mathcal{U}_{f \upharpoonright n} \circ_{f(n)} = \mathcal{U}_{f \upharpoonright (n+1)}; \dots \rangle$. Since $U_{f \upharpoonright (n+1)} \supset O_{f(n)}^n$, this play is lost by I. Let $\mathcal{O}_n = \{O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega\}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min \{i : \{\sigma_k(i) : k \in \omega\}$ is unbounded}. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Then $U_{\sigma_k \upharpoonright (m+1)} = U_{\tau \land \sigma_k(m)}$ for all $k \in K$, and so $\{U_{\sigma_k} \upharpoonright (m+1) : k \in K\}$ covers X, being cofinal in \mathcal{U}_{τ} . But $U_{\sigma_k} \supset U_{\sigma_k \upharpoonright (m+1)}$, and hence $\{U_{\sigma_k} : k \in K\}$ covers X, a contradiction Let $f \in \omega^{\uparrow \omega}$ be such that $\bigcup_{n \in \omega} O_{f(n)}^n = X$. Look at the play $\langle \mathcal{U}_{\emptyset}, U_{\langle f(0) \rangle}; \dots, \mathcal{U}_{f \upharpoonright n}, U_{f \upharpoonright n \land f(n)} = U_{f \upharpoonright (n+1)}; \dots \rangle$. Since $U_{f \upharpoonright (n+1)} \supset O_{f(n)}^n$, this play is lost by I. Π A space (X, τ) is called a *D*-space, if for every $f: X \to \tau$ such that

 $x \in f(x)$ for all x, there exists a closed discrete $D \subset X$ such that $X = \bigcup_{x \in D} f(x)$.

Let $\mathcal{O}_n = \{ O_k^n = \bigcap_{\sigma \in \omega^{\uparrow n+1}, \sigma(n)=k} U_{\sigma} : k \in \omega \}$. \mathcal{O}_n covers X: If not, pick x and $\langle \sigma_k : k \in \omega \rangle \subset \omega^{\uparrow (n+1)}$ such that $\sigma_k(n) = k$ and $x \notin U_{\sigma_k}$. Let $m = \min \{i : \{\sigma_k(i) : k \in \omega\}$ is unbounded}. Let $K \in [\omega]^{\omega}$ be s.t. $\tau = \sigma_k \upharpoonright m$ is the same for all $k \in K$ and $\sigma_{k_0}(m) < \sigma_{k_1}(m)$ for all $k_0 < k_1$ in K. Then $U_{\sigma_k \upharpoonright (m+1)} = U_{\tau \land \sigma_k(m)}$ for all $k \in K$, and so $\{U_{\sigma_k} \upharpoonright (m+1) : k \in K\}$ covers X, being cofinal in \mathcal{U}_{τ} . But $U_{\sigma_k} \supset U_{\sigma_k \upharpoonright (m+1)}$, and hence $\{U_{\sigma_k} : k \in K\}$ covers X, a contradiction Let $f \in \omega^{\uparrow \omega}$ be such that $\bigcup_{n \in \omega} O_{f(n)}^n = X$. Look at the play $\langle \mathcal{U}_{\emptyset}, U_{\langle f(0) \rangle}; \dots, \mathcal{U}_{f \upharpoonright n}, U_{f \upharpoonright n \land f(n)} = U_{f \upharpoonright (n+1)}; \dots \rangle$. Since $U_{f \upharpoonright (n+1)} \supset O_{f(n)}^n$, this play is lost by I. Π

A space (X, τ) is called a *D*-space, if for every $f : X \to \tau$ such that $x \in f(x)$ for all x, there exists a closed discrete $D \subset X$ such that $X = \bigcup_{x \in D} f(x)$.

Problem

Is every regular Lindelöf space a D-space?

I.e., for every $U \in \mathcal{U}$ there exists $x_U \in X$ such that $U \subset f(x_U) \in \tau$ and every $x \in X$ has a neighbourhood O(x) which intersects only finitely many $U \in U$.

I.e., for every $U \in \mathcal{U}$ there exists $x_U \in X$ such that $U \subset f(x_U) \in \tau$ and every $x \in X$ has a neighbourhood O(x) which intersects only finitely many $U \in U$.

Since any selection of \mathcal{U} gives a closed discrete subset, $\{x_U : U \in \mathcal{U}\}$ is as required.

I.e., for every $U \in \mathcal{U}$ there exists $x_U \in X$ such that $U \subset f(x_U) \in \tau$ and every $x \in X$ has a neighbourhood O(x) which intersects only finitely many $U \in U$.

Since any selection of \mathcal{U} gives a closed discrete subset, $\{x_U : U \in \mathcal{U}\}$ is as required.

I.e., for every $U \in \mathcal{U}$ there exists $x_U \in X$ such that $U \subset f(x_U) \in \tau$ and every $x \in X$ has a neighbourhood O(x) which intersects only finitely many $U \in U$.

Since any selection of \mathcal{U} gives a closed discrete subset, $\{x_U : U \in \mathcal{U}\}$ is as required.

Is there maybe any problem in this argument?

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}$. Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$.

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}$. Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$. Letting $U_0 = \bigcup \{f(x) : x \in F_0\}$, I suggests $\{U_0\} \cup \{f(x) : x \in X \setminus U_0\}$.

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}$. Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$. Letting $U_0 = \bigcup \{f(x) : x \in F_0\}$, I suggests $\{U_0\} \cup \{f(x) : x \in X \setminus U_0\}$. Suppose that II replies with $\{U_0\} \cup \{f(x) : x \in F_1\}$ for some $F_1 \in [X \setminus U_0]^{<\omega}$.

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}$. Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$. Letting $U_0 = \bigcup \{f(x) : x \in F_0\}$, I suggests $\{U_0\} \cup \{f(x) : x \in X \setminus U_0\}$. Suppose that II replies with $\{U_0\} \cup \{f(x) : x \in F_1\}$ for some $F_1 \in [X \setminus U_0]^{<\omega}$. Letting $U_1 = \bigcup \{f(x) : x \in F_1\}$, I suggests $\{U_0, U_1\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1)\}$.

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}$. Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$. Letting $U_0 = \bigcup \{f(x) : x \in F_0\}$, I suggests $\{U_0\} \cup \{f(x) : x \in X \setminus U_0\}$. Suppose that II replies with $\{U_0\} \cup \{f(x) : x \in F_1\}$ for some $F_1 \in [X \setminus U_0]^{<\omega}$. Letting $U_1 = \bigcup \{f(x) : x \in F_1\}$, I suggests $\{U_0, U_1\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1)\}$. Suppose that II replies with $\{U_0, U_1\} \cup \{f(x) : x \in F_2\}$ for some $F_2 \in [X \setminus (U_0 \cup U_1)]^{<\omega}$.

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}.$ Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$. Letting $U_0 = \bigcup \{ f(x) : x \in F_0 \}$, I suggests $\{U_0\} \cup \{f(x) : x \in X \setminus U_0\}$. Suppose that II replies with $\{U_0\} \cup \{f(x) : x \in F_1\}$ for some $F_1 \in [X \setminus U_0]^{<\omega}$. Letting $U_1 = \bigcup \{ f(x) : x \in F_1 \}, \exists suggests \}$ $\{U_0, U_1\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1)\}.$ Suppose that II replies with $\{U_0, U_1\} \cup \{f(x) : x \in F_2\}$ for some $F_2 \in [X \setminus (U_0 \cup U_1)]^{<\omega}$. Letting $U_2 = \bigcup \{f(x) : x \in F_2\}$, suggests $\{U_0, U_1, U_2\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1 \cup U_2)\}$, and so on.

There is a play lost by I, which yields a sequence $\langle U_n = \bigcup_{x \in F_n} f(x) : n \in \omega \rangle$ covering X

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}.$ Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$. Letting $U_0 = \bigcup \{ f(x) : x \in F_0 \}$, I suggests $\{U_0\} \cup \{f(x) : x \in X \setminus U_0\}$. Suppose that II replies with $\{U_0\} \cup \{f(x) : x \in F_1\}$ for some $F_1 \in [X \setminus U_0]^{<\omega}$. Letting $U_1 = \bigcup \{ f(x) : x \in F_1 \}, \exists suggests \}$ $\{U_0, U_1\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1)\}.$ Suppose that II replies with $\{U_0, U_1\} \cup \{f(x) : x \in F_2\}$ for some $F_2 \in [X \setminus (U_0 \cup U_1)]^{<\omega}$. Letting $U_2 = \bigcup \{f(x) : x \in F_2\}$, suggests $\{U_0, U_1, U_2\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1 \cup U_2)\}$, and so on.

There is a play lost by I, which yields a sequence $\langle U_n = \bigcup_{x \in F_n} f(x) : n \in \omega \rangle$ covering X s.t. $F_{n+1} \subset X \setminus \bigcup_{i \leq n} U_n$.

Let f be a neighbourhood assignment. Consider the following strategy of I in the Menger game on X. $\mathcal{U}_{\emptyset} = \{f(x) : x \in X\}.$ Suppose that II replies with $\{f(x) : x \in F_0\}$ for some $F_0 \in [X]^{<\omega}$. Letting $U_0 = \bigcup \{ f(x) : x \in F_0 \}$, I suggests $\{U_0\} \cup \{f(x) : x \in X \setminus U_0\}$. Suppose that II replies with $\{U_0\} \cup \{f(x) : x \in F_1\}$ for some $F_1 \in [X \setminus U_0]^{<\omega}$. Letting $U_1 = \bigcup \{ f(x) : x \in F_1 \}, \exists suggests \}$ $\{U_0, U_1\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1)\}.$ Suppose that II replies with $\{U_0, U_1\} \cup \{f(x) : x \in F_2\}$ for some $F_2 \in [X \setminus (U_0 \cup U_1)]^{<\omega}$. Letting $U_2 = \bigcup \{f(x) : x \in F_2\}$, suggests $\{U_0, U_1, U_2\} \cup \{f(x) : x \in X \setminus (U_0 \cup U_1 \cup U_2)\}$, and so on.

There is a play lost by I, which yields a sequence $\langle U_n = \bigcup_{x \in F_n} f(x) : n \in \omega \rangle$ covering X s.t. $F_{n+1} \subset X \setminus \bigcup_{i \leq n} U_n$. $\bigcup_{n \in \omega} F_n$ is a closed discrete kernel of f.

Mathias forcing for filters

A subset \mathcal{F} of $[\omega]^{\omega}$ is called a *filter* if \mathcal{F} contains all cofinite sets,

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$.

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.
$\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_\mathcal{F}$ is a natural forcing adding a pseudointersection of $\mathcal{F}\colon$

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

Applications:

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

Applications: killing mad families,

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

Applications: killing mad families, making the ground model reals not splitting, etc.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. Example: Laver forcing, Hechler forcing.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. . Example: Laver forcing, Hechler forcing. Miller and Cohen forcing do not add dominating reals.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. Example: Laver forcing, Hechler forcing. Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. Example: Laver forcing, Hechler forcing. Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. Example: Laver forcing, Hechler forcing. Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. Example: Laver forcing, Hechler forcing. Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Let B be an unbounded subset of ω^{ω} .

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. Example: Laver forcing, Hechler forcing. Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Let *B* be an unbounded subset of ω^{ω} . A filter \mathcal{F} on ω is called *B*-Canjar if $\mathbb{M}_{\mathcal{F}}$ adds no reals dominating all elements of *B*.

П

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. Example: Laver forcing, Hechler forcing. Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Let *B* be an unbounded subset of ω^{ω} . A filter \mathcal{F} on ω is called *B*-Canjar if $\mathbb{M}_{\mathcal{F}}$ adds no reals dominating all elements of *B*. \Box

There is a combinatorial characterization of Canjar filters by Hrusak and Minami in terms of the filter $\mathcal{F}^{<\omega}$ on $[\omega]^{<\omega}$ generated by $\{[F]^{<\omega}: F \in \mathcal{F}\}.$

1) Every σ -compact filter is Canjar.

Theorem (Brendle 1998) 1) Every σ -compact filter is Canjar. 2) ($\mathfrak{b} = \mathfrak{c}$). Let \mathcal{A} be a mad family.

1) Every σ -compact filter is Canjar. 2) ($\mathfrak{b} = \mathfrak{c}$). Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$,

1) Every σ -compact filter is Canjar. 2) $(\mathfrak{b} = \mathfrak{c})$. Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

1) Every σ -compact filter is Canjar. 2) $(\mathfrak{b} = \mathfrak{c})$. Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

If an ultrafilter ${\mathcal F}$ is Canjar, then it is a P-filter

1) Every σ -compact filter is Canjar. 2) $(\mathfrak{b} = \mathfrak{c})$. Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

If an ultrafilter \mathcal{F} is Canjar, then it is a P-filter and there is no monotone surjection $\varphi: \omega \to \omega$ such that $\varphi(\mathcal{F})$ is rapid.

1) Every σ -compact filter is Canjar. 2) $(\mathfrak{b} = \mathfrak{c})$. Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

If an ultrafilter \mathcal{F} is Canjar, then it is a P-filter and there is no monotone surjection $\varphi: \omega \to \omega$ such that $\varphi(\mathcal{F})$ is rapid. The converse is consistently not true by a recent result of Blass, Hrusak and Verner. Its proof relies on the following characterization

1) Every σ -compact filter is Canjar. 2) $(\mathfrak{b} = \mathfrak{c})$. Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

If an ultrafilter \mathcal{F} is Canjar, then it is a P-filter and there is no monotone surjection $\varphi: \omega \to \omega$ such that $\varphi(\mathcal{F})$ is rapid. The converse is consistently not true by a recent result of Blass, Hrusak and Verner. Its proof relies on the following characterization

Recall that a filter \mathcal{F} is a *coherent strong* P^+ -*filter* if for every sequence $\langle \mathcal{C}_n : n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n : n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all n

and $X_m \cap [k_n, k_{n+1}) \subset X_n \cap [k_n, k_{n+1})$ for n < m,

Recall that a filter \mathcal{F} is a *coherent strong* P^+ -*filter* if for every sequence $\langle \mathcal{C}_n : n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n : n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all nand $X_m \cap [k_n, k_{n+1}) \subset X_n \cap [k_n, k_{n+1})$ for n < m, then $|A| = (X_n \cap [k_n, k_{n+1})) \subset T^+$

then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in \mathcal{F}^+$.

Recall that a filter \mathcal{F} is a *coherent strong* P^+ -*filter* if for every sequence $\langle \mathcal{C}_n \colon n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n \colon n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all n and $X_m \cap [k_n, k_{n+1}) \subset X_n \cap [k_n, k_{n+1})$ for n < m, then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in \mathcal{F}^+$.

Strong P^+ -filters are defined by removing the coherence requirement.

 $\mathbb{M}_{\mathcal{F}}$ is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$.

 $\mathbb{M}_{\mathcal{F}}$ is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. \Box

Theorem (Chodounský-Repovš-Z. 2015) Let \mathcal{F} be a filter. Then $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding

 $\mathbb{M}_{\mathcal{F}}$ is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$.

Theorem (Chodounský-Repovš-Z. 2015) Let \mathcal{F} be a filter. Then $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$

 $\mathbb{M}_{\mathcal{F}}$ is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. \Box

Theorem (Chodounský-Repovš-Z. 2015) Let \mathcal{F} be a filter. Then $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

 $\mathbb{M}_{\mathcal{F}}$ is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. \Box

Theorem (Chodounský-Repovš-Z. 2015) Let \mathcal{F} be a filter. Then $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Recall that a poset \mathbb{P} is almost ω^{ω} -bounding if for every \mathbb{P} -name \dot{f} for a real and $q \in \mathbb{P}$, there exists $g \in \omega^{\omega}$ such that for every $A \in [\omega]^{\omega}$ there is $q_A \leq q$ such that $q_A \Vdash g \upharpoonright A \not\leq^* \dot{f} \upharpoonright A$.

Some corollaries

Corollary Let \mathcal{F} be an analytic filter on ω .

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.
Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

Corollary (Hrušák-Martínez 2012)

There exists in ZFC a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ adds a dominating real (= $\mathcal{F}(\mathcal{A})$ is not Canjar).

П

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

Corollary (Hrušák-Martínez 2012)

There exists in ZFC a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ adds a dominating real (= $\mathcal{F}(\mathcal{A})$ is not Canjar).

Answers a question of Brendle.

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

Corollary (Hrušák-Martínez 2012)

There exists in ZFC a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ adds a dominating real (= $\mathcal{F}(\mathcal{A})$ is not Canjar).

Answers a question of Brendle.

Problem (Hrušák-Martínez 2012)

Does there exists in ZFC a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ does not add dominating real (= $\mathcal{F}(\mathcal{A})$ is Canjar/Menger)?.

П

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

П

Corollary (Hrušák-Martínez 2012)

There exists in ZFC a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ adds a dominating real (= $\mathcal{F}(\mathcal{A})$ is not Canjar).

Answers a question of Brendle.

Problem (Hrušák-Martínez 2012)

Does there exists in ZFC a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ does not add dominating real (= $\mathcal{F}(\mathcal{A})$ is Canjar/Menger)?.

Corollary

A filter \mathcal{F} is Canjar iff it is a strong P^+ -filter.

Theorem (Guzman-Hrusak-Martinez 2013) A filter \mathcal{F} is Canjar iff it is a coherent strong P^+ -filter.

Recall that a filter \mathcal{F} is a *coherent strong* P^+ -*filter* if for every sequence $\langle \mathcal{C}_n \colon n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n \colon n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all n

and $X_m \cap [k_n, k_{n+1}) \subset X_n \cap [k_n, k_{n+1})$ for n < m, then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in \mathcal{F}^+$.

Strong P^+ -filters are defined by removing the coherence requirement.

П

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}.$

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$.

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

Lemma

Suppose that $\mathcal{X} \subset \mathcal{P}(\omega)$ is closed under taking supersets and \mathcal{O} is a cover of \mathcal{X} by sets open in $\mathcal{P}(\omega)$.

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

Lemma

Suppose that $\mathcal{X} \subset \mathcal{P}(\omega)$ is closed under taking supersets and \mathcal{O} is a cover of \mathcal{X} by sets open in $\mathcal{P}(\omega)$. Then there exists a family $Q \subset [\omega]^{<\omega}$ such that $\mathcal{X} \subset \bigcup_{q \in Q} \uparrow q$ and for every $q \in Q$ there exists $\mathcal{O}' \in [\mathcal{O}]^{<\omega}$ covering $\uparrow q$.

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

Lemma

Suppose that $\mathcal{X} \subset \mathcal{P}(\omega)$ is closed under taking supersets and \mathcal{O} is a cover of \mathcal{X} by sets open in $\mathcal{P}(\omega)$. Then there exists a family $Q \subset [\omega]^{<\omega}$ such that $\mathcal{X} \subset \bigcup_{q \in Q} \uparrow q$ and for every $q \in Q$ there exists $\mathcal{O}' \in [\mathcal{O}]^{<\omega}$ covering $\uparrow q$.

Proof. Wlog $\mathcal{O} \subset \mathcal{B}$. Let us fix $X \in \mathcal{X}$ and find $\{[n_i, q_i]: i \in m\} \subset \mathcal{O}$ such that $\uparrow X \subset \bigcup_{i \in m} [n_i, q_i]$.

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

Lemma

Suppose that $\mathcal{X} \subset \mathcal{P}(\omega)$ is closed under taking supersets and \mathcal{O} is a cover of \mathcal{X} by sets open in $\mathcal{P}(\omega)$. Then there exists a family $Q \subset [\omega]^{<\omega}$ such that $\mathcal{X} \subset \bigcup_{q \in Q} \uparrow q$ and for every $q \in Q$ there exists $\mathcal{O}' \in [\mathcal{O}]^{<\omega}$ covering $\uparrow q$.

Proof. Wlog $\mathcal{O} \subset \mathcal{B}$. Let us fix $X \in \mathcal{X}$ and find $\{[n_i, q_i]: i \in m\} \subset \mathcal{O}$ such that $\uparrow X \subset \bigcup_{i \in m} [n_i, q_i]$. Breaking some of the sets $[n_i, q_i]$ into smaller pieces of the same form, we may assume if necessary that for some $n \in \omega$ we have $n_i = n$ for all $i \in m$.

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

Lemma

Suppose that $\mathcal{X} \subset \mathcal{P}(\omega)$ is closed under taking supersets and \mathcal{O} is a cover of \mathcal{X} by sets open in $\mathcal{P}(\omega)$. Then there exists a family $Q \subset [\omega]^{<\omega}$ such that $\mathcal{X} \subset \bigcup_{q \in Q} \uparrow q$ and for every $q \in Q$ there exists $\mathcal{O}' \in [\mathcal{O}]^{<\omega}$ covering $\uparrow q$.

Proof. Wlog $\mathcal{O} \subset \mathcal{B}$. Let us fix $X \in \mathcal{X}$ and find $\{[n_i, q_i]: i \in m\} \subset \mathcal{O}$ such that $\uparrow X \subset \bigcup_{i \in m} [n_i, q_i]$. Breaking some of the sets $[n_i, q_i]$ into smaller pieces of the same form, we may assume if necessary that for some $n \in \omega$ we have $n_i = n$ for all $i \in m$. Moreover, wlog no proper subcollection of $\mathcal{O}' = \{[n, q_i]: i < m\}$ covers $\uparrow X$.

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

Lemma

Suppose that $\mathcal{X} \subset \mathcal{P}(\omega)$ is closed under taking supersets and \mathcal{O} is a cover of \mathcal{X} by sets open in $\mathcal{P}(\omega)$. Then there exists a family $Q \subset [\omega]^{<\omega}$ such that $\mathcal{X} \subset \bigcup_{q \in Q} \uparrow q$ and for every $q \in Q$ there exists $\mathcal{O}' \in [\mathcal{O}]^{<\omega}$ covering $\uparrow q$.

Proof. Wlog $\mathcal{O} \subset \mathcal{B}$. Let us fix $X \in \mathcal{X}$ and find $\{[n_i, q_i]: i \in m\} \subset \mathcal{O}$ such that $\uparrow X \subset \bigcup_{i \in m} [n_i, q_i]$. Breaking some of the sets $[n_i, q_i]$ into smaller pieces of the same form, we may assume if necessary that for some $n \in \omega$ we have $n_i = n$ for all $i \in m$. Moreover, wlog no proper subcollection of $\mathcal{O}' = \{[n, q_i]: i < m\}$ covers $\uparrow X$. Therefore $\{q_i: i < m\} = \{t \subset n: X \cap n \subset t\}$,

For $n \in \omega$ and $q \subset n$ we set $[n,q] := \{A \in \mathcal{P}(\omega) \colon A \cap n = q\}$. Sets [n,q] form a standard base \mathcal{B} for the topology of $\mathcal{P}(\omega)$. Set also $\uparrow X = \{A \in \mathcal{P}(\omega) \colon A \supset X\}$ for every $X \subset \omega$.

Lemma

Suppose that $\mathcal{X} \subset \mathcal{P}(\omega)$ is closed under taking supersets and \mathcal{O} is a cover of \mathcal{X} by sets open in $\mathcal{P}(\omega)$. Then there exists a family $Q \subset [\omega]^{<\omega}$ such that $\mathcal{X} \subset \bigcup_{q \in Q} \uparrow q$ and for every $q \in Q$ there exists $\mathcal{O}' \in [\mathcal{O}]^{<\omega}$ covering $\uparrow q$.

Proof. Wlog $\mathcal{O} \subset \mathcal{B}$. Let us fix $X \in \mathcal{X}$ and find $\{[n_i, q_i]: i \in m\} \subset \mathcal{O}$ such that $\uparrow X \subset \bigcup_{i \in m} [n_i, q_i]$. Breaking some of the sets $[n_i, q_i]$ into smaller pieces of the same form, we may assume if necessary that for some $n \in \omega$ we have $n_i = n$ for all $i \in m$. Moreover, wlog no proper subcollection of $\mathcal{O}' = \{[n, q_i]: i < m\}$ covers $\uparrow X$. Therefore $\{q_i: i < m\} = \{t \subset n: X \cap n \subset t\}$, and consequently $\bigcup_{i < m} [n, q_i] = \uparrow (X \cap n)$. Thus $X \in \uparrow X \subset \uparrow (X \cap n) \subset \bigcup_{i < m} \mathcal{O}'$.

Suppose that \mathcal{F} is Hurewicz, but there exists an unbounded $X \subset \omega^{\omega}$, $X \in V$, and an $\mathbb{M}_{\mathcal{F}}$ -name \dot{g} for a function dominating X (as forced by $1_{\mathbb{M}_{\mathcal{F}}}$).

Suppose that \mathcal{F} is Hurewicz, but there exists an unbounded $X \subset \omega^{\omega}$, $X \in V$, and an $\mathbb{M}_{\mathcal{F}}$ -name \dot{g} for a function dominating X (as forced by $1_{\mathbb{M}_{\mathcal{F}}}$). For every $x \in X$ find $n^x \in \omega$ and a condition $\langle s^x, F^x \rangle$ forcing $x(n) < \dot{g}(n)$ for all $n \ge n^x$.

Suppose that \mathcal{F} is Hurewicz, but there exists an unbounded $X \subset \omega^{\omega}$, $X \in V$, and an $\mathbb{M}_{\mathcal{F}}$ -name \dot{g} for a function dominating X (as forced by $1_{\mathbb{M}_{\mathcal{F}}}$). For every $x \in X$ find $n^x \in \omega$ and a condition $\langle s^x, F^x \rangle$ forcing $x(n) < \dot{g}(n)$ for all $n \ge n^x$. Since X cannot be covered by a countable family of bounded sets, wlog $s^x = s_*$ and $n^x = n_*$ for all $x \in X$.

Suppose that \mathcal{F} is Hurewicz, but there exists an unbounded $X \subset \omega^{\omega}$, $X \in V$, and an $\mathbb{M}_{\mathcal{F}}$ -name \dot{g} for a function dominating X (as forced by $1_{\mathbb{M}_{\mathcal{F}}}$). For every $x \in X$ find $n^x \in \omega$ and a condition $\langle s^x, F^x \rangle$ forcing $x(n) < \dot{g}(n)$ for all $n \ge n^x$. Since X cannot be covered by a countable family of bounded sets, wlog $s^x = s_*$ and $n^x = n_*$ for all $x \in X$.

For every $m \in \omega$ consider $S_m = \{s \in [\omega]^{<\omega} : \max s_* < \min s \land \exists F_s \in \mathcal{F} (\langle s_* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m)) \}.$

For every $m \in \omega$ consider $S_m = \{s \in [\omega]^{<\omega} : \max s_* < \min s \land \exists F_s \in \mathcal{F} (\langle s_* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m))\}.$ For every $F \in \mathcal{F}$ there exists $s \in S_m$ such that $s \subset F$.

For every $m \in \omega$ consider $S_m = \{s \in [\omega]^{<\omega} : \max s_* < \min s \land \exists F_s \in \mathcal{F} (\langle s_* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m))\}.$ For every $F \in \mathcal{F}$ there exists $s \in S_m$ such that $s \subset F$. In other words, $\mathcal{U}_m := \{\uparrow s : s \in S_m\}$ is an open cover of \mathcal{F} .

For every $m \in \omega$ consider $S_m = \{s \in [\omega]^{<\omega} : \max s_* < \min s \land \exists F_s \in \mathcal{F} (\langle s_* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m))\}.$ For every $F \in \mathcal{F}$ there exists $s \in S_m$ such that $s \subset F$. In other words, $\mathcal{U}_m := \{\uparrow s : s \in S_m\}$ is an open cover of \mathcal{F} . Since \mathcal{F} is Hurewicz, for every m there exists $\mathcal{V}_m \in [\mathcal{U}_m]^{<\omega}$ such that $\{\bigcup \mathcal{V}_m : m \in \omega\}$ is a γ -cover of \mathcal{F} .

For every $m \in \omega$ consider $S_m = \{s \in [\omega]^{<\omega} : \max s_* < \min s \land \exists F_s \in \mathcal{F} (\langle s_* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m))\}.$ For every $F \in \mathcal{F}$ there exists $s \in S_m$ such that $s \subset F$. In other words, $\mathcal{U}_m := \{\uparrow s : s \in S_m\}$ is an open cover of \mathcal{F} . Since \mathcal{F} is Hurewicz, for every m there exists $\mathcal{V}_m \in [\mathcal{U}_m]^{<\omega}$ such that $\{\bigcup \mathcal{V}_m : m \in \omega\}$ is a γ -cover of \mathcal{F} . Let $\mathcal{T}_m \in [\mathcal{S}_m]^{<\omega}$ be such that $\mathcal{V}_m = \{\uparrow s : s \in \mathcal{T}_m\}$ and $f(m) = \max\{g_s(m) : s \in \mathcal{T}_m\}.$

For every $m \in \omega$ consider $S_m = \{s \in [\omega]^{<\omega} : \max s_* < \min s \land \exists F_s \in \mathcal{F} (\langle s_* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m))\}.$ For every $F \in \mathcal{F}$ there exists $s \in S_m$ such that $s \subset F$. In other words, $\mathcal{U}_m := \{\uparrow s : s \in S_m\}$ is an open cover of \mathcal{F} . Since \mathcal{F} is Hurewicz, for every m there exists $\mathcal{V}_m \in [\mathcal{U}_m]^{<\omega}$ such that $\{\bigcup \mathcal{V}_m : m \in \omega\}$ is a γ -cover of \mathcal{F} . Let $\mathcal{T}_m \in [S_m]^{<\omega}$ be such that $\mathcal{V}_m = \{\uparrow s : s \in \mathcal{T}_m\}$ and $f(m) = \max\{g_s(m) : s \in \mathcal{T}_m\}$. We will derive a contradiction by showing $x <^* f$ for each $x \in X$. Fix $x \in X$ and $l \in \omega$ such that for every $m \ge l$ there exists $s_m \in \mathcal{T}_m$ such that $F^x \in \uparrow s_m$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $\mathcal{U}_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $\mathcal{U}_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$. For every $F \in \mathcal{F}$ consider the function $x_F \in \omega^{\omega}$, $x_F(n) = \min \{m \colon F \in \uparrow q_m(n)\}$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $\mathcal{U}_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$. For every $F \in \mathcal{F}$ consider the function $x_F \in \omega^{\omega}$, $x_F(n) = \min \{m \colon F \in \uparrow q_m(n)\}$. $X = \{x_F \colon F \in \mathcal{F}\}$ is unbounded.

Let G be the generic pseudointersection of \mathcal{F} added by $\mathbb{M}_{\mathcal{F}}$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $\mathcal{U}_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$. For every $F \in \mathcal{F}$ consider the function $x_F \in \omega^{\omega}$, $x_F(n) = \min \{m \colon F \in \uparrow q_m(n)\}$. $X = \{x_F \colon F \in \mathcal{F}\}$ is unbounded.

Let G be the generic pseudointersection of \mathcal{F} added by $\mathbb{M}_{\mathcal{F}}$. For every n there exists g(n) such that $G \setminus n \in \uparrow q_{g(n)}(n)$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $\mathcal{U}_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$. For every $F \in \mathcal{F}$ consider the function $x_F \in \omega^{\omega}$, $x_F(n) = \min \{m \colon F \in \uparrow q_m(n)\}$. $X = \{x_F \colon F \in \mathcal{F}\}$ is unbounded.

Let G be the generic pseudointersection of \mathcal{F} added by $\mathbb{M}_{\mathcal{F}}$. For every n there exists g(n) such that $G \setminus n \in \uparrow q_{g(n)}(n)$. Fix $F \in \mathcal{F}$ and find n such that $G \setminus n \subset F$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $\mathcal{U}_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$. For every $F \in \mathcal{F}$ consider the function $x_F \in \omega^{\omega}$, $x_F(n) = \min \{m \colon F \in \uparrow q_m(n)\}$. $X = \{x_F \colon F \in \mathcal{F}\}$ is unbounded.

Let G be the generic pseudointersection of \mathcal{F} added by $\mathbb{M}_{\mathcal{F}}$. For every n there exists g(n) such that $G \setminus n \in \uparrow q_{g(n)}(n)$. Fix $F \in \mathcal{F}$ and find n such that $G \setminus n \subset F$. Then $G \setminus n \in \uparrow q_{g(n)}(n)$ yields $F \in \uparrow q_{g(n)}(n)$, which implies $x_F(n) \leq g(n)$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle \mathcal{U}_n \colon n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $\mathcal{U}_n = \{\uparrow q_m(n) \colon m \in \omega\}$, where $q_m(n) \in [\omega]^{<\omega}$. For every $F \in \mathcal{F}$ consider the function $x_F \in \omega^{\omega}$, $x_F(n) = \min \{m \colon F \in \uparrow q_m(n)\}$. $X = \{x_F \colon F \in \mathcal{F}\}$ is unbounded.

Let G be the generic pseudointersection of \mathcal{F} added by $\mathbb{M}_{\mathcal{F}}$. For every n there exists g(n) such that $G \setminus n \in \uparrow q_{g(n)}(n)$. Fix $F \in \mathcal{F}$ and find n such that $G \setminus n \subset F$. Then $G \setminus n \in \uparrow q_{g(n)}(n)$ yields $F \in \uparrow q_{g(n)}(n)$, which implies $x_F(n) \leq g(n)$. Thus $g \in \omega^{\omega}$ is dominating X, and therefore $\mathbb{M}_{\mathcal{F}}$ fails to preserve ground model unbounded sets.

Question

Let $\mathcal{A} \subset [\omega]^{\omega}$ be a mad family. Is there a Hurewicz filter \mathcal{F} containing $\mathcal{F}(\mathcal{A})$?

Question

Let $\mathcal{A} \subset [\omega]^{\omega}$ be a mad family. Is there a Hurewicz filter \mathcal{F} containing $\mathcal{F}(\mathcal{A})$? What happens after adding ω_1 many Cohen or Miller reals?
Question

Let $\mathcal{A} \subset [\omega]^{\omega}$ be a mad family. Is there a Hurewicz filter \mathcal{F} containing $\mathcal{F}(\mathcal{A})$? What happens after adding ω_1 many Cohen or Miller reals?

A positive answer would give the consistency of $\mathfrak{s} = \mathfrak{b} = \omega_1 < \mathfrak{a}$.

Thanks to >50 Nations helping Ukraine to survive!

 Thank you for your attention.