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This notes are based on a series of talks given at the Set Theory seminar of University of Vienna. This
notes are intended to be as close as possible to the transcripts of those seminar session. Due to the nature of
the seminar and the questions from the audience, some proofs were split into different sessions in order to give
examples and clear answers to the questions from the audience.

1 Descriptive Set Theory (preliminaries)

Definition 1.1 (The Baire space B). The Baire space is the set w* endowed with the following topology. For
every n € W™ for some n, define the following basic open set

Ny ={few[ncf}

the open sets are of the form |J X where X is a collection of basic open sets.

This topology is metrizable, let d(f, g) = n}rl where n is the least natural number that satisfies f(n) # g(n),

in case it does not exist then f = g and d(f,g) = 0.

Definition 1.2 (The Cantor space C). The cantor space is the set 2% with the relative subspace topology.

Definition 1.3 (Borel class). Let S € {B,C}. The class Borel(S) of all Borel sets in S is the least collection
of subsets of S which contains all open sets and is closed under complements, countable unions and countable
intersections.

Definition 1.4 (Borel hierarchy). Let S € {B,C}. Define the classes ,(S) and I1,(S), a < w1, as follows.
1. 31(S) is the class of open sets.
2. II,(S) is the class of closed sets.
3. For all a > 1, ¥4(95) is the class of of all countable unions of sets from \Js_,, Hp(S).
4. For all a > 1, I1,(S) is the class of of all countable unions of sets from |, Xp(5).
Exercise 1.1. 1. For alln < w and all n € w™ the set Ny, is closed.
2. Fordll f < o <wy, £g(B) C £,B.
3. Borel(B) = Jycqcw, Za(B).
4. | Borel(B) |=2*.
5. There are subsets of B that are not Borel.

Definition 1.5. Let S € {B,C}. We say that A C S is co-meager, if it contains a countable intersection of
open and dense subsetes of S. A subset of S is meager, if the cmplement of it is co-meager.

Definition 1.6. Let S € {B,C}. We say that X C S has the property of Baire (PB) if there is an open set
U C S such that XAU is meager.

Lemma 1.7. Every Borel subset of B has the property of Baire.
Exercise 1.2. Prove Lemma 1.7. (Hint: prove that X has the PB if and only if B\X has the PB.)
Definition 1.8 (Borel*-code). Let X be a non-emprty set.

1. A subset T C X<% is a tree if for all f € T with n = dom(f) >0 and for allm <n, f [meT.



2. A non-empty tree T C X<% is called an w-tree if the following holds:

(a) If f:n— X isinT andn >0, then forallz € X, f [ (n—1) U{(n—1,2)} € T.
(b) There is no f:w — X such that for alln <w, f[neT.

3. We order T by C. The mazimal elements of T are called leaves and the set of leaves is denoted by L(T).
The least element of T is called root (). For every f € T that is not the root, we denote by f~ the
immediate predecessor of f inT. We call node every element that is not a leaf.

4. A Borel*-code is a pair (T,7), where T C (w X w)<¥ is an w-tree and 7w is a function from L(T) to the
basic open sets of B.

5. Given a Borel*-code (T, 7) and n € B, we define the game GB*(n, (T, ™)) as follows. The game GB*(n, (T, m))
is played by two players, I and II. In each move 0 < n < w the function f, :n+1— (w x w) from T
is chosen as follows: Suppose fn,_1 € T is chosen, in case n =0, f_1 = 0. If fn_1 is not a leaf, then I
choose some i < w and then II choose some j < w. This determines fn, = fn—1 U{(n,(i,5))}. If fr1 is
a leaf, then the game ends and I1 wins if n € w(fn—1).

6. A function W : w<* — w is a winning strategy of II in GB*(n, (T, 7)), if II wins by choosing W (ig, - . . ,in)
on the move n, where ig,...,i, are the moves that I made on the moves 0, ..., n.

7. A Borel*-code (T, 7) is a Borel*-code for X C B if for allmp € B, n € X if and only if IT has a winning
strategy in GB*(n, (T, m)). We say that X C B is a Borel* set if it has a Borel*-code. We denote by
Borel*(B) the class of Borel* sets.

Theorem 1.9. Borel(B) = Borel*(B).

Proof. Let us start by showing that Borel(B) C Borel*(B). We will prove this by showing that every open set
is a Borel* set and if {X;}i<. is a countable collection of Borel* sets, then | J,__ X; and (), X; are Borel*
sets.

Suppose that X is an open set. Let {{;}i<, be a collection of elements of w<“ such that X = J,_,, Ng,.
Let T = (w x w)<! and 7 the fuction given by m((0, (¢,7))) = Ne,. It is clear that for every n € X, II has a
winning strategy in GB*(n, (T, 7)). Therefore (T, ) is a Borel*-code for X.

Suppose that {X;}i<. is a countable collection of Borel* sets. Let (T;,7;) be a Borel*-code of X;. Let T
be the set of all functions f : n — (w X w), for some n < w, such that if f(0) = (i,7), then there is g € T},
g:n—1— (wxw) with dom(f) = dom(g) + 1, and f(m) = g(m — 1), for all 0 < m < dom(f). For every
leaf f of T'if f(0) = (4, ), then there is g € L(T;) such that f(m) = g(m — 1), for all 0 < m < dom(f); define

m(f) =mi(g).
Claim 1.10. (7', 7) is a Borel*-code of (;,, X, and (), Xi is a Borel* set.

1<w <w

Proof. Let n € (,.,, Xi. Then for all i < w, there is a winning strategy W; of IT in GB*(n, (T, 7;)). Define
W :w<¥ — w by W(ip) =0 and W(ig,...,in) = Wi, (i1,...,in) for all 0 < n < w. It is easy to see that W is a
winning strategy of II in GB*(n, (T, 7)).

Let n € B be such that IT has a winning strategy, W, in GB*(n,(T,w)). Define W; : w<* — w by
Wiio, - .., in) = W(i,ig,...,in). It is easy to see that W; is a winning strategy of IT in GB*(n, (T}, m;)). Since
this holds for all i < w, we conclude that n € X;, for all i < w. O]

Let (T;,m;) be a Borel*-code of X;. Let T be the set of all functions f : n — (w X w), for some n < w, such
that if f(0) = (¢,7), then thereis g € T}, g : n — 1 — (w X w) with dom(f) = dom(g) + 1 and f(m) = g(m — 1),
for all 0 < m < dom(f). For every leaf f of T if f(0) = (¢, j), then there is g € L(T}) such that f(m) = g(m—1),
for all 0 < m < dom(f); define n(f) = m;(g).

Claim 1.11. (T, 7) is a Borel*-code of U, ., Xi, and | J, ., Xi is a Borel* set.

Proof. Let n € |J,;.,, Xi. Then there is j < w, such that there is a winning strategy W; of IL in GB*(n, (T}, 7;)).
Define W : w<“ — w by W (ip) = j and W (io,...,in) = W;(i1,...,i,) for all 0 < n < w. It is easy to see that
W is a winning strategy of II in GB*(n, (T, 7)).

Let n € B be such that IT has a winning strategy, W, in GB*(n, (T,7)). Define W' : w<* — w by
W'(it, ... in) = W(0,...,i,). It is easy to see that W' is a winning strategy of IT in GB*(n, (Tw (o), Tw (0)))-
Therefore n € Xy (o)- O

To show that Borel*(B) C Borel(B) we will define the rank of an w-tree and the rank of the elements of
an w-tree.
Given an w-tree T, we define the rank function, rk, as follows:



o If n € L(T), then rk(n) = 0.

o 17 ¢ L(T), then rk(n) = ULrk(F) + 1] £~ = ).
The rank of a tree T is defined by rk(T) = rk(0).

Exercise 1.3. 1. Show that the rank of an w-tree is smaller than w; .

2. Find an w-tree with infinite rank.

Let X be a Borel* set, and (T, ) a Borel*-code of X. We will prove by induction on rk(T) that X is a
Borel set.

Case rk(T) = 0. It is clear that T = {0} and X = 7 (0), therefore X is a Borel set.

Suppose 7k(T) = a and if Y is Borel* set with Borel*-code (T”,7') with rk(T) < «, then Y is a Borel set.

Let T;; be the set of all functions f : n — w such that there is a function g € T with ¢(0) = (¢, ),
dom(g) = dom(f)+ 1 and f(m) = g(m + 1) for all m € dom(f). Define m;; by m;;(f) = 7(g), where g € T is
such that ¢g(0) = (4,7), dom(g) = dom(f) + 1 and f(m) = g(m + 1) for all m € dom(f). Notice that for all
i,j < w, rk(T;;) < a. By the induction hypothesis, for all i,j < w, (Tj;,7;;) is a Borel*-code of a Borel set.
Denote by B;; the Borel set with Borel*-code (T;;, ;).

Claim 1.12. X =, U, Bij

Proof. Let n € X, then II has a winning strategy, W, in GB*(n, (T, m)). Define Wy ;) : w<¥ — w by

Wiw ) (05 - - -, in) = W (i, o, ..., i), it is clear that W —iW (i) is a winning strategy of ILin G B*(n, (Tw iy, Tiw (i)) )

s0 1) € Biw (). Therefore, for all i < w there is j < w such that n € B;;, we conclude that n € ,_,, Uj<w B, .
Let n € ;2 U<, Bij- Then for all i < w there is j < w such that 5 € B;;, denote by h(i) this j. So
there is Wip(;) a winning strategy of IT in GB*(n, (Tini), Tin(i))). Define W : w<* — w by W(ig) = h(io) and
W io, ..y in) = Whig) (i1, . . ., in). It is clear that W is a winning strategy of IT in GB*(n, (Tiw (), Tiw (s))) and
neX. O

O

At the beginning the Borel*-codes look very artificial and complicated, but this codes will be very helpful
in the future. In order to give a better understanding of the motivation behind the Borel*-codes we will define
the Borel**-codes. This codes use intersections and unions as part of the coding of sets, this gives a better
understanding on what is going on in the coding.

Definition 1.13. 1. A pair (T,w) is a Borel**-code if T C w<¥ is an w-tree and 7 is a function with
domain T such that if f € T is a leaf, then w(f) is an open set, and in case f is a node, w(f) = N if
| dom(f) | is an even number and w(f) = U if | dom(f) | is an odd number.

2. For an element n € B and a Borel** -code (T, ), the game B*(n, (T, m)) is played as follows. There are
two players, I and I1. The game starts from the root of T. At each move, if the game is at node f € T and
w(f) =N, then I chooses an immediate successor g of f and the game continues from this g. If 7(f) = U,
then IT makes the choice. Finally, if w(f) is an open set, then the game ends, and II wins if and only if

n e mw(x).

3. A set X C w¥ is a Borel**-set if there is a Borel**-code (T, ) such that for alln € w”, n € X if and
only if II has a winning strategy in the game B*(n, (T,7)). We denote by Borel* (B) the set of Borel**
sets.

Exercise 1.4. Borel*(B) = Borel**(B).

l**

Notice that the rank was defined for w-trees in general. For every Borel** set, X, as the least ordinal «

such that there is a Borel**-code of X.
Exercise 1.5. What is the relation between the rank of a Borel™ set and the Borel hierarchy?
Definition 1.14. e X C B is XI(B) if there is Y C B x B a Borel set such that pr(Y) = X.
e X CBisIli(B) if B\X is X1(B).
o X CB is AY(B) if it is £}(B) and II}(B).
Lemma 1.15. The following are equivalent:
e X is ¥1(B).
e X =pr(Y) for some closed y C B x B.



Lemma 1.16. If X C B is Borel, then X is A}(B).

Proof. Let X C B be a Borel set and (T, 7) a Borel*-code for X. Let h : w<¥ — w be one-to-on and onto.
For all f € w* define Wy : w<¥ — w by W¢(ig,...,4,) = f(h(io,...,in)). Let P be the set of all the tuples
(n, f) € w* xw* such that Wy is a winning strategy for IT in the game GB*(n, (T, m)). It is clear that pr(P) = X.

Claim 1.17. P is closed

Proof. Let (n, f) ¢ P then there are n < w and {jo,...,jn} such that if I choose j,, in the m-move and II
choose W(jo...,Jm) in the m-move, then after n moves the game stops in a leaf g and n ¢ m(g). Therefore,
there is r < w, such that Ny, N7(g) =0, so (Nypr X Nypm) NP = 0.

We conclude that X is X1(B) and since Borel(B) is closed under complements, we conclude that B\ X is
Borel, therefore it is }(B). We conclude that X is Al(B). O

Exercise 1.6. Prove the claims of the following proof.

Theorem 1.18 (Separation). If X,Y C B are ©1(B) disjoint sets, then there is a Borel set Z C B that satisfies
X CZCB\Y.

Proof. Choose X*,Y* C B x B such that pr(X*) = X and pr(Y*) =Y. For all € B, let X,, be the set of all
& € w” that satisfy the following: If dom(§) = n, then there are n'¢’ € B, (n/,¢') € X*, and ' [ n=1n [ n and
£ C ¢\ Define Y, in the same way. We denote by X}, the set of functions £ € w™ such that there is 7/ € B,
and { € Xer and n [ n C 0. Tt is clear that X, =, .., Xytn-

Given two trees T, T" C w<¥, we say that T' < T” if there is a function f : T — T” that satisfies the following:
for all n,& € T, if n C &, then f(n) € f(§). Let Z be the set of n € B that satisfy Y, < X,,.

Claim 1.19. o Ifne X, thenY, < X,,.
o IfY, < X,, thenn &Y.
e X CZCB\Y.

for all 7,7’ C w<* we define the game GC(T,T") as follows: in the n-th movement, I chooses t,, € T such
that ¢, C t,, holds for all m < n, and II chooses t}, € T” such that ¢/, C ¢/ holds for all m < n. The game ends

m — 'n

when a player cannot make a choice, the player that cannot make a choice looses.
Claim 1.20. T < T’ si y solo si II has a winning strategy for the game GC(T,T").

Let T be the set of all functions with finite domain, f : n —
holds:

. f(i) € (W),
e If j+1<nand f(j) = (& )k<s, then & € Xe, and & € X, .
o If j<l<m, f(j) = (§k)r<s, and f(I) = (§},)k<3, then for all k < 3, & C &

Define 7 with domain L(T) as w(f) = Ng, if dom(f) =n+1, f(n) = (&k)k<s3, and & ¢ Ye,. And 7(f) =0 in
other case.

(w™)? such that for all i < n the following

m<w

Claim 1.21. There is a Borel*-code (T',7') such that there is a tree isomorphism h : T' — T that satisfies
™' (f) = m(h(f))-
Claim 1.22. II has a winning strategy in GB*(n, (T',7")) if and only if GC(Y,, X,,).

O

The following is a standard way to code structures with domain w with elements of 2¥. Fix a countable
relational vocabulary £ = {P, | n < w}.

Definition 1.23. Fiz a bijection m: w<¥ — w. For every n € 2¥ define the L-structure A,, with domain w as
follows: For every relation Py, with arity n, every tuple (a1,as,...,a,) in W™ satisfies

(a17a27 oo 7an) € Pﬁn <~ n(ﬂ(maalaa% .. '70“71)) =1

Definition 1.24 (The isomorphism relation). Assume T is a complete first order theory in a countable vocab-
ulary. We define =7 as the relation

{(n,€) €22 %27 [(A) E T, A E T, Ay = Ag) or (Ag T, Ag =T}



A function f: 2% — 2¢ is Borel, if for every open set A C 2% the inverse image f~1[A] is a Borel subset of
2¢. Let F; and E5 be equivalence relations on 2¢. We say that F; is Borel reducible to Fs, if there is a Borel
function f: 2¥ — 2 that satisfies (z,y) € E1 < (f(x), f(y)) € Eq, we denote it by F; <p Fjs.

Exercise 1.7. A function f is Borel if and only if for all Borel set X, f~[X] is Borel.

Example 1.1. Let Ty be the theory of the order of the rational numbers, =7, has only two equivalent classes.
Let Ty be the theory of a vector space over the field of rational numbers. =7, <p=7, .

This can be use to compare the complexity of two theories, from Example 1.1 we conclude that T} is less
complex than T5, in the Borel reducibility sense.

Question 1.25. Is there an equivalence relation E on 2“ such that for every complete first order theory in a
countable vocabulary T, either E £p=7 or =7 £p E.

Let T be a complete countable theory, we will denote by I'(\,T') the amount of non-isomorphic models of T
of size X\. The following is the main theorem of [19].

Theorem 1.26 (The Main Gap Theorem, [19]). Let T' be a complete countable theory.
e IfT is not superstable, or deep, or with DOP or OTOP then for every uncountable cardinal A, I(\,T) = 2.
o If T is shallow superstable without DOP and without OTOP, then for every a > 0, I(R,,T) < 3, (o).

Let T be a complete countable theory, we say that T is a classifiable theory if 7" is superstable without DOP
and without OTOP. T} in Example 1.1 is not classifiable and T is classifiable. The Main Gap Theorem tells
us that classifiable theories are less complex than non-classifiable ones, in the stability sense.

2 Generalized Baire spaces

Generalized descriptive set theory is the generalization of descriptive set theory to uncountable cardinals. For
a background on classical descriptive set theory see [11] or [12]. During this notes, x will be an uncountable
cardinal that satisfies k<" = &, unless otherwise is stated.

The aim of this first section is to introduce the notions of x-Borel class, Al(x) class, xk-Borel* class, and
show the relation between these classes.

Definition 2.1 (The Generalized Baire space B(k)). Let k be an uncountable cardinal. The generalized Baire
space is the set k" endowed with the following topology. For every n € k<%, define the following basic open set

Ny ={fer|ncf}
the open sets are of the form |J X where X is a collection of basic open sets.

Definition 2.2 (The Generalized Cantor space C(k)). Let £ be an uncountable cardinal. The generalized
Cantor space is the set 2% endowed with the following topology. For every n € 2<%, define the following basic
open set

Ny={fe2"[ncf}

the open sets are of the form |J X where X is a collection of basic open sets.

Definition 2.3 (k-Borel class). Let S € {B(k), C(k)}. The class k-Borel(S) of all k-Borel sets in S is the least
collection of subsets of S which contains all open sets and is closed under complements, unions and intersections
both of length at most k.

Definition 2.4. Let S € {B(k),C(k)}.

o X C S isaXi(k) setif there is a set Y C S x S a closed set such that pr(Y)={zx € S |3y €S (v,y) €
Yl=X.

o X CSisalll(k) setif S\X is a X1(k) set.
o X CSisali(k) setif X is a L1(k) set and a I} (k) set.
Definition 2.5 (k-Borel*-set in B(k), C(k)). Let S € {27, k"}.

1. A subset T C k<" is a tree if for all f € T with a = dom(f) > 0 and for all B < «, f | B €T and
Fre<tf.



2. A tree T is a v+, M\-tree if does not contain chains of length A\ and its cardinality is less than k™. It is
closed if every chain has a unique supremum in T.

3. A pair (T,h) is a k-Borel*-code if T is a closed k™, A-tree, A\ < k, and h is a function with domain T
such that if © € T is a leaf, then h(z) is a basic open set and otherwise h(xz) € {U,N}.

4. For an element n € S and a k-Borel*-code (T, h), the k-Borel*-game B*(T, h,n) is played as follows.
There are two players, I and I1. The game starts from the root of T. At each move, if the game is at
node x € T and h(x) = N, then I chooses an immediate successor y of x and the game continues from
this y. If h(z) = U, then II makes the choice. At limits the game continues from the (unique) supremum
of the previous moves. Finally, if h(x) is a basic open set, then the game ends, and II wins if and only if

n € h(x).

5. A set X C S is a k-Borel*-set if there is a k-Borel*-code (T, h) such that for alln € S, n € X if and
only if I1 has a winning strategy in the game B*(T, h,n).

We will write I1 1 B*(T, h,n) when II has a winning strategy in the game B*(T, h,n).

Example 2.1. Let u < k be a regular cardinal, we say that X C k is a p-club if X is an unbounded set and it
1s closed under p-limits.

Let p < Kk be a regular cardinal. For all n,§ € 2% we say that n and & are =
{a < k| n(a) =¢&(a)} contains a p-club.

The relation =7, is a k-Borel* set. Let us define the following k-Borel*-code (T, h):

2

5 equivalent if the set

o T ={f€r~“F2| f is strictly incresing}.
e For f not a leave, h(f) = U if dom(f) is even and h(f) =N if dom(f) is odd.

e To define h(f) for a leave f, first define the set L(g) = {f € k*T! | g C f} for all g € T with domain
w, and vy = supn<w(g(n)). Let h | L(g) be a bijection between L(g) and the set {N, x Ng | p,q €

’@’yg+17p(’}/g) =q(7)}-

Let us show that (T, h) codes =2,. Supposen =2 &, so there is an w-club C such that Va € C n(a) = &(a). The
following is a winning strategy for II in the game B*(T, h,(n,£)). For every even n < w, if the game is at f
with dom(f) = n, II chooses an immediate successor [’ of f, such that f C [’ and f'(n) € C. Since C is closed
under w limits, after w moves the game continues at g € k¥ strictly increasing with v = supn<w(g(n)) € C. So
there is G an immediate successor of g, such that h(G) = Nyy X Ne¢py. Finally if IT chooses G in the w mouve,
then IT wins.

For the other direction, suppose n #2 &, so there is A C S% stationary (S is the set of w-cofinal ordinals
below k) such that for all a € S, n(a) # ().

We will show that for every o strategy of 11, o is not a winning strategy. Let o be an strategy for II, this
mean that o is a function from k<“T1 — k. Notice that if II follows o as a strategy, then when the game is
at f, dom(f) =n even, I chooses f' such that f C " and f'(n) = o((f(0), f(1),..., f(n—1))). Let C be the
set of closed points of o, C = {a < k| o(a=¥) C a}, C is unbounded and closed under w-limits. Therefore
CNA#OQ. Let v be the least element of C N A that is an w-limit of elements of C, and let {yn} n<w be a
sequence of elements of C cofinal to v. The following is a winning strategy for I in the game B*(T, h, (n,£)), if
IT uses o as an strategy.

When the game is at f with dom(f) = n, n odd, then I chooses an immediate successor [’ of f, such that
f C f and f'(n) is the least element of {yn }n<w that is bigger than f(n—1). This element always exists because
{Yn}n<w 5 cofinal to v and v € C, 7 is a closed point of o. Since I is following o as a strategy and 7 is a closed
point of o, after w moves the game continues at g € k¥ strictly increasing with v = supp<,(g(n)) € C N A.
Since n(y) # &(7), there is no G immediate successor of g, such that (n,§) € h(G). So it does not matter what
IT chooses in the w move, I will win.

The previous definitions are the generalization of the notions of Borel, A}, and Borel* from descriptive set
theory, the spaces w* and 2¥. A classical result in descriptive set theory states that the Borel class, the Al
class, and the Borel* class are the same. This doesn’t hold in generalized descriptive set theory as we will see.

Theorem 2.6 (2], Thm 17). x-BorelC k-Borel*

Proof. Let us prove something even stronger. X is a k-Borel set if and only if there is a k-Borel*-code (T, h)
such that (T, h) codes X and T is a k™, w-tree.
Let us define the sets (B;);<.+ by:

e By ={N, | pe 2"}, the set of basic open sets.



o If « = f+n for n an odd natural number and 5 a limit ordinal or 0, then B, = Bgyn_1 U{(B| B C
Bgin-1,| B|< K}

e If & = B+ n for n an even positive natural number and /3 a limit ordinal or 0, then By = Bgtn—1U{lJB |
B C Bgin-1,| B|< K}

e If v is a limit ordinal, then B, = U5<a Bg.

We will show by induction over « that for every X € B,, there is a k-Borel*-code (T, h) such that (T, h) codes
X and T is a kT, w-tree.

For a« = 0. If X € By, then T' = {0} and h(#) = X is a x-Borel*-code that codes X.

Suppose a« =  + n for n an even natural number and [ a limit ordinal or 0 is such that for all X € B,,
there is a r-Borel*-code (T, h) such that (T, h) codes X and T is a T, w-tree. Suppose X € Byin41, S0 either
X € By +nor X =B for some B C Bg,,, with | B|=~v < k. Let B ={X;}i<4, by the induction hypothesis
we know that there are x-Borel*-code {(T}, h;)}i< such that (T}, h;) codes X; and T; is a k1, w-tree, for all
i <. Let T = {r} UlU,,Ti x {i} be the tree ordered by r < (z,j) for all (z,j) € U, Ti x {i}, and
(z,7) < (y,7) ifand only if i = 7 and x < y in T}. Let T C k<% be a tree isomorphic to 7 and let G : T — T
be a tree isomorphism. If G(x) # r, then denote G(z) by (G1(x), Ga(x)). Define h by h(xz) =N if G(z) = r, and
h(z) = hg, (z)(G1(x))-

Let us show that (T, h) codes X. Let n € X, son € X; for all i <. If at the beginning I chooses z, then
IT follows the winning strategy from the game B*(Tg, (), hg,(z),7), choosing the element given by G1. We
conclude that II + B*(T, h,n). Let n & X, so there is ¢ < -y such that n ¢ X, so IT has no winning strategy for
the game B*(T;, h;,n). Since at the beginning I can choose z such that Go(z) = ¢, IT cannot have a winning
strategy for the game B*(T, h,n). Otherwise IT would have a winning strategy the game B*(T;, h;,n).

The case o = 4+ n for n an odd natural number and § a limit ordinal or 0 is similar, just make h(xz) = U
if G(z) = r when constructing (7', h).

Suppose « is a limit ordinal such that for all § < «, for all X € Bg, there is a k-Borel*-code (T, h) such that
(T, h) codes X and T is a k+,w-tree. Let X € By, since B, = UB<a Bg there is § < « such that X € Bg. By
the induction hypothesis, there is a x-Borel*-code (T, h) such that (T, h) codes X and T is a k1, w-tree. O

Theorem 2.7 ([2], Thm 17). 1. k-Borel* C ¥1(k).
2. k-BorelC ¥1(k).
3. k-BorelC Al(k).
Proof. 1. Let X be a x-Borel* set, there is a xk-Borel* code (T, h) such that X is coded by (T, h).

<K

Since k<" = K, we can code the strategies o : T'— T by elements of x".

Claim 2.8. The set Y = {(n,€) | £ is a code of a winning strategy for I in B*(T, h,n)} is closed.

Proof. Let (n,£) be an element not in Y. So £ is not a winning strategy for IT in B*(T, h,n)}, there is
a < & such that for every ¢ € N¢jq, € is not a winning strategy for IT in B*(T, h,n)}. Otherwise T' would
have a branch of length x. Because of the same reason, there is 8 < & such that for every f € Ny;s,
¢ € Ngja, € is not a winning strategy for IT in B*(T\, h, f)}. So N, x N¢|q is a subset of the complement
of Y. O

Since pr(Y) = X, we are done.
2. It follows from Theorem 2.6 and (1).

3. Tt follows from (2) and the fact that x-Borel sets are closed under complement.

The following theorem is the separation theorem and the proof can be found in [14].

Theorem 2.9 ([14], Corollary 34). Suppose A and B are disjoint ¥1(k) sets. There are k-Borel* sets Cy and
Cy such that A C Cy, B C C1, and Cy and Cy are duals.

Theorem 2.10 ([2], Theorem 17). Afi(k) C k-Borel*

Proof. Let A be a Al(k) set. Let B = B(k)\A4, by 2.9, there are k-Borel* sets Cy and C; such that A C Cp,
B C (4, and Cy and C} are duals. Since Cy and C; are duals, Cy and C; are disjoint. So A = Cy, B=C,. O



Corollary 2.11 ([14], Corollary 35). X is A}(k) if there is a k-Borel*-code (T, h) that codes X and
111 B*(T,h,n) < 1Y B*(T,h,n)
for all m € K™ the game is determined.
Exercise 2.1. Prove the claims of the following proof.
Theorem 2.12 ([2], Theorem 18). 1. xk-Borel A} (k)
2. Aj(k) & Di(k)

Proof. 1. Let & — (T, he) be a continuous coding of the xk-Borel*-codes with T" a kT w-tree, such that for all
kT w-tree, T, and h, there is  such that T¢, he = (T, h).

Claim 2.13. The set B = {(n,£) | n is in the set coded by (T¢, he)} is Ai(k) and is not k-Borel, otherwise
D ={n| (n,n) ¢ B} would be Borel.
(Hint: use the set C = {(n,§,0) | 0 is a winning strategy for I in B*(T¢, he,n)}).

Claim 2.14. There is A C 2¥ x 2% such that if B C 2% is a $1(k) set, then there is n € 2% such that
B={¢|(&mn) € A}.

(Hint: the construction used in the classical case works too).
The set D = {n | (n,n) € A} is £}(x) but not I} ().

O
From the previous results, we can see that
k-Borel C Al(k) C %1(k)
and
Ai(k) C k-Borel* C 2 (k).
Therefore we are missing to determine whether one of the following holds:
e Al(k) C Kx-Borel* C X1(k);
e Al(k) C Kx-Borel* = X1(k);
o Al(k) = k-Borel* C Z1(k).
As we will see, only case has not been answered.
Question 2.15. Is the following consistent Al(k) = k-Borel* C $1(k)?
3 Reflection of IIi-sentences
In this session we will focus on proving the consistency ofs-Borel* = ¥1(k). This was initially proved by

Friedman-Hyttinen-Weisnstein in [2] under the assumption V' = L.
Theorem 3.1 ([2], Theorem 18). If V = L, then r-Borel* = $1(x).

We will show another proof which shows that x-Borel* = $1(x) holds in L but it can also be forced.

A function f: k* — k* is k-Borel, if for every open set A C x* the inverse image f~![A] is a k-Borel subset
of X. If @1 and Q5 are quasi-orders on By, By € {27 k" }, respectively, then we say that Q; is Borel-reducible
to @2 if there exists a k-Borel map f: 2® — 2% such that for all n,& € 2% we have nQ:1§ < f(n)Q2f(¢) and
this is also denoted by Q1 —p Q-.

Fact 3.2. Assume f: 2% — 2% is a k-Borel function and B C 2~ is k-Borel*. Then f~1[B] is k-Borel*.

Proof. Let (Tp, Hp) be a k-Borel*-code for B. Define the x-Borel*-code (T4, H4) by letting Tp = T4 and
Ha(b) = f~1[Hp(b)] for every branch b of T. Let A be the x-Borel*-set coded by (T, Ha). Clearly, II 1
B*(Tg, Hp,n) if and only if I1 1 B*(T4, Ha, f~1(n)), so f~1[B] = A. O



The idea: Find a x-Borel* equivalence relation R such that for all ¥} (k) equivalence, Q, Q@ —p5 R.

A quasi-order is ¥1-complete, if it is X1 (k) and every X1 (k) quasi-order is Borel-reducible to it. We will find
a Yi-complete R that is x-Borel*. Before we prove the result, let us take a look to the weakly compact cardinal
to understand the motivation behind the definition of the diamond principle DI§(I13).

Let us suppose « is a IIi-indescernible cardinal. We know that Reg(r) the set of regular cardinals below &
is stationary. Therefore, we can define the equivalence relation =%, by

N =heg & © {a € Reg|n(a)# &(a)} is non-stationary
Let us show that =%, is a Y1-complete equivalence relation.
Theorem 3.3 ([1] Thm 3.7). If k is a [I3—indescribable cardinal, then =eg 1S Y1 (k)-complete.

Proof. Let E be a $1(x) equivalence relation on x~. Then there is a closed set C on £" x k* X £ such that n E £
if and only if there exists ¢ € k" such that (9,£,() € C. Let us define U = {(n | o,& [ o,( [ @) | (n,£,Q) €
C & a < K}, and for every v < k define C, = {(n,£,{) €Y x 7" x77 | Va<y (n[a,{ o, [ o) € U}. Let
E, C~7 x 77 be the relation defined by (n,{) € E, if and only if there exists ( € 47 such that (n,¢,¢) € C,,.
Since £ is an equivalence relation, it follows that E, is reflexive and symmetric, but not necessary transitive.
Let us define the reduction by

fa(n) if E, is an equivalence relation and n [ a € a®

Fn)(e) = {0 otherwise.
where f,(n) is a code in k\{0} for the E,—equivalence class of 7.

Let us prove that if (,§) € E, then (F(n), F(§)) €=.,. Suppose (1,§) € E. Then there is ( € " such that
(n,£,¢) € C and for all @ < k we have that (n [ @,€ [ @, [ a) € U. On the other hand, we know that there is
a club D such that for all « € DN Reg(k), n [ a, & | a, ¢ | @« € a®. We conclude that for all « € D N Reg(k),
if F, is an equivalence relation, then (n,&) € E,. Therefore, for all « € D N Reg(k), F(n)(a) = F(&)(a), so
F(n) =hey F(§). Let us prove that if (n,€) ¢ E, then F(n) #%,, F(§). Suppose n, { € " are such that
(n,€) ¢ E. We know that there is a club D such that for all « € DN Reg(k), n [ a, £ | « € a®.

Notice that because C'is closed (n,£) ¢ E is equivalent to

Veer® (Fa<k (nlaéla,(la)gl),

so the sentence (n,¢) ¢ E is a I} property of the structure (V,,€,U,n,£). On the other hand, the sentence
V1, G, ¢ € K7[((C1,¢2) € E A ((2,(3) € E) — ((1,(3) € E] is equivalent to the sentence V(1, (o, (3,61,02 €
K"[305 € K"(¢1 V g V 1b3)], where 11, 9 and 13 are, respectively, the formulas 3oy < & (¢1 | @1, | @1,01 |
a1) ¢ U, Jas < k (2 | ao,(3 [ an,b2 [ a2) ¢ U, and Vas < k ({1 | a3,(3 | as,03 | ag) € U. Therefore, the
sentence V(1, (2, (3 € K%[((¢1,¢2) € EN((2,(3) € E) — ((1,(3) € E] is a 13 property of the structure (V,, €, U).
It follows that the sentence

(D is unbounded in ) A ((n,€) ¢ E) A (E is an equivalence relation) A (k is regular)

is a I} property of the structure (Vi,€,U,n,£). By I} reflection, we know that there are stationary many
v € Reg(k) such that v is a limit point of D, E, is an equivalence relation, and (n [ v,£ [ v) ¢ E,. We conclude
that there are stationary many v € Reg(x) such that f,(n) # f,(£), and hence F(n) #., F(n) O

reg

As we can see from the previous theorem, IT} reflection implies that =", g 18 ¥1(k)-complete. Unfortunately
=Tey 18 nOt necessarily x-Borel®. As we saw in the first session, =/ is a k-Borel* equivalence relation. Therefore,

if there is a 13 reflection notion on the set {a < | ¢f(«) = w}, then we conclude that k-Borel* = X1(k). Let
us define a notion of reflection on ordinals of cofinality w.

Exercise 3.1. A set Q is X1(k) if and only if there is a tree T on k<" x k<% x k<% such that Q = pr([T)),
that is,
(8 €Q = A er"Vr<rn(nInéln(ln)eT

A TIi-sentence ¢ is a formula of the form VX 3Y ¢ where ¢ is a first-order sentence over a relational language
L as follows:

e [ has a predicate symbol € of arity 2;
e L has a predicate symbol X of arity m(X);

e L has a predicate symbol Y of arity m(Y);



e £ has infinitely many predicate symbols (A, )new, each A, is of arity m(A,,).
Definition 3.4. For sets N and xz, we say that N sees x iff N is transitive, p.r.-closed, and x U {x} C N.

Suppose that a set N sees an ordinal a, and that ¢ = VX3Y ¢ is a I[Ii-sentence, where ¢ is a first-order
sentence in the above-mentioned language £. For every sequence (A, )new such that, for all n € w, A,, C a™(®n),
we write

<Oé, ea (An)n€w> ):N ¢
to express that the two hold:

1~ (An)nEw € N;
2. (N,€) (VX Cam™@)3Y Cam™M)[(a, €, X, Y, (An)new) = @], where:

e ¢ is the interpretation of ¢;
e X is the interpretation of X;
e Y is the interpretation of Y, and

e for all n € w, A, is the interpretation of A,,.

We write a™ for |a|T, and write (o, €, (A,)new) | ¢ for

<a7 €, (An)n€w> ’:Ha+ ¢

Definition 3.5. Let k be a reqular and uncountable cardinal, and S C k stationary.
DI%(T13) asserts the existence of a sequence N = (N, | a € S) satisfying the following:

1. for every a € S, N, is a set of cardinality < x that sees a;
2. for every X C k, there exists a club C C k such that, for alla € CNS, X N € Ny;

3. whenever (k, €, (An)new) E @, with ¢ a I1i-sentence, there are stationarily many o € S such that |N,| =
laf and {a, €, (A, N (@™4))e0) En, ¢-

The principle DI§(I13) provide us the reflection principle that we need, let us show that there is a $1-complete
quasi-order of 2.

Definition 3.6. Given a stationary subset S C r, we define a quasi-order C° over 2% by letting, for any two
elementsn:2 — Kk and £ : 2 = K,

n Co ¢ iff {a € S| nla) > &)} is nonstationary.

Lemma 3.7 (Transversal lemma, [4], Prop 3.1). Suppose that (N, | a € S) is a DI§(I13)-sequence, for a given
stationary S C k. For every Ilj-sentence ¢, there exists a transversal (1 | a € S) € [[,cq Na satisfying the
following.

For every n € k*, whenever (k, €, (An)new) E ¢, there are stationarily many « € S such that

1. no =10l a, and
2. (o, €, (A, N (am(A")))n€w> En. ¢-

Exercise 3.2. There is a first-order sentence Vg, in the language with binary predicate symbols € and X such
that, for every ordinal o and every X C a X a,

(X is a function from a to o) iff ((o, €, X) = Yc)-

Exercise 3.3. Let a be an ordinal. Suppose that ¢ is a L1-sentence involving a predicate symbol A and two
binary predicate symbols Xo,X1. Denote Ry := {(Xo, X1) | (o, €, 4, X0, X1) = ¢}. Then there are I1}-sentences
YReflexive ONA YTransitive Such that:

1. (Ry 2 {(n.m) [ m € a*}) iff ({a, €, A) = YReftexive);
2. (Ry is transitive) iff ((o, €, A) E Yvansitive)-
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Definition 3.8. Denote by Levs(k) the set of level sequences in k<% of length 3:

Levs(k) := U KT X KT X K.

Fiz an injective enumeration {{s | § < k} of Levs(k). For each § < k, we denote ls = (£3,0},0%). We then
encode each T C Levs(k) as a subset of k° via:

T, = {(5vﬁ7€g(5)7&1§(5)7£§(ﬁ)) | d<rls €T, pBe dom(gg)}

Theorem 3.9 ([4], Thm 3.5). Suppose DI§(I13) holds for a given stationary S C k.
For every analytic quasi-order Q over k", Q —pC?.

Proof. Let Q be an analytic quasi-order over k. Fix a tree T on <" x k<" X <" such that Q = pr([T]), that
is,

M8 e@ < e Vr<r(nInglIn(lT)eT.

We shall be working with a first-order language having a 5-ary predicate symbol A and binary predicate
symbols Xo, Xy, Xy and e. By Exercise 3.2, for each ¢ < 3, let us fix a sentence 1} . concerning the binary
predicate symbol X; instead of X, so that

(Xi < FEK) iff (<:‘€, E,A, X07X17 X2> ): wgnc)'
Define a sentence ¢g to be the conjunction of four sentences: 9 , i 42  and

Vr3OVBe(B, T) = FyoIN I (Xo(B,70) A XK1 (B,71) A Xa(B,72) AA(, B,70,71,72))]-

Set A := T} as in Definition 3.8. Evidently, for all n,£,¢ € P(k X k), we get that

(r,€,4,1,8,0) F ¢q
iff the two hold:
1. n,&,¢ € k¥, and
2. for every T < k, there exists § < k, such that {5 = (n [ ,§ [ 7,( [ 7) isin T.

Let ¢g := 3Xa(pg). Then ¢ is a Li-sentence involving predicate symbols A,Xq,X; and € for which the
induced binary relation

Rso = {(n,€) € (P(k x K))* | (5, €,4,n,€) = ¢q}

coincides with the quasi-order ). Now, appeal to Exercise 3.3 with ¢¢ to receive the corresponding IT}-sentences
YReflexive N Yryansitive- L hen, consider the following two H%—sentences:

[ ] w% = wReﬂexive N wTransitive A ¢Q7 and
i le := YReflexive A\ YTransitive /\ ﬁ((ZSQ)'

Let N = (N, | @ € S) be a DI§(II})-sequence. Appeal to Lemma 3.7 with the II}-sentence 1/161,2 to obtain a
corresponding transversal (1, | @ € S) € [[,cg No- Note that we may assume that, for all o € S, 7, € “a, as
this does not harm the key feature of the chosen transversal.

For each n € k", let

Zy={a€S|ANa® and n | a are in N,}.

Claim 3.10. Suppose n € k. Then S\ Z, is nonstationary.

Proof. Fix primitive-recursive bijections ¢ : k% ++ k and d : k° <+ k. Given n € k", consider the club Dy of all
a < Kk such that:

e ] Ca;
e claxa] =a;
s dlaxaxaxaxal=a

Now, as c[n] is a subset of k, by the choice N, we may find a club D; C & such that, for all « € D; NS,
c[n] N @ € N,. Likewise, we may find a club Dy C k such that, for all « € Dy N S, d[A] Na € N,.
For all & € SN Dy N Dy N Dy, we have
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o cnlal=cnn(axa)=cnNcaxa]=cnnaeN,, and
e d[ANa’] =d[A]Nd[e’] =d[A]Na € N,.

As N, is p.r.-closed, it then follows that i [ & and ANa® are in N,. Thus, we have shown that S\ Z, is disjoint
from the club Dy N Dy N Ds. O]

For all n € x" and o € Z,, let:
’PTLOZ = {p € aa mNOL | <Oé, EvAmaE)?pvn fa> ):Na 7/183}
Finally, define a function f : k* — 2* by letting, for all n € k¥ and «a < &,

1, ifae€ Z, and ny € Py a;
0, otherwise.

fn)(a) = {

Exercise 3.4. f is Borel.
Claim 3.11. Suppose (1,€) € Q. Then f(n) C° f(£).

Proof. As (n,€) € Q, let us fix ( € k" such that, for all 7 < &, (n [ 7, [ 7,{ | 7) € T. Define a function
g : k — K by letting, for all 7 < k&,

g(r) ==min{é <k [ls =78 [7.¢7)}

As (S\ Z,), (S\ Z¢) and (S\ Z¢) are nonstationary, let us fix a club C' C & such that C NS C Z,, N Z: N Z.
Consider the club D := {a € C | g[a] C a}. We shall show that, for every « € DN S, if f(n)(a) = 1 then

f()(a) =1.
Fix an arbitrary « € D NS satisfying f(n)(a) = 1. In effect, the following three conditions are satisfied:

1. (a,€,ANa®) EN, YReflexive,

2. {a,€,AN %) BN, YTransitive, and

3. {a, €, AN A5 M0, | @) EN, do-

In addition, since « is a closure point of g, by definition of ¢¢, we have
(e, AN’ T &l a,(la)Fgq.

As o € S and g is first-order,

<O£,G,Aﬂ0l5,77 faaf fOé,C [Ck> 'ZNQ PQ,

so that, by definition of ¢,
<a7€7Am040777 fohf [Oé> ':N{y ¢Q

By combining the preceding with clauses (2) and (3) above, we infer that the following holds, as well:

(4) (o, €,AN 0 14,8 | ) En, o
Altogether, f(£)(a) =1, as sought. O
Claim 3.12. Suppose (n,€) € k" x k" \ Q. Then f(n) Z° f(£).

Proof. As (S\ Z,) and (S'\ Z¢) are nonstationary, let us fix a club C C  such that CNS C Z, N Z¢. As Q is
a quasi-order and (n,&) ¢ Q, we have:

1. (K, €, A) &= YReflexives
2. <:‘<L7 SH A> ': '¢Transitive7 and

3. (k,€,4,0,8) = ~(¢q).

so that, altogether,
(k, €, 4,1,8) = ¥4

Then, by the choice of the transversal (1, | « € S), there is a stationary subset S’ C SN C such that, for all
acS"

12
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- A{a,€,ANa®) EN, YReflexives
(a,€,AN0®) N, Yrvansitives

3. {a, €, AN’ n | a,€ | a) En, (¢g), and
4. na=1n1a.

By Clauses (3’) and (4’), we have that n, ¢ P¢ o, so that f(£)(a) = 0.
By Clauses (17), (2’) and (4’), we have that 1, € Py, so that f(n)(a) = 1.
Altogether, {a € S| f(n)(a) > f(€)(a)} covers the stationary set S', so that f(n) Z° f(€). O

o

This completes the proof of Theorem 3.9 O

Definition 3.13. For a stationary S C &, <>§Jr asserts the existence of a sequence (K, | o € S) satisfying the
following:

1. for every infinite o € S, K, is a set of size |a|;
2. for every X C k, there exists a club C C k such that, for allca € CNS, CNa, X Na € Ky;
3. the following set is stationary in [H+]<":

(M€ [H+]<" | MNreS & cps(M, €) = (Kun, €)}-

Theorem 3.14 ([18], Prop 1.4). &5 holds in L.
Lemma 3.15 ([3], Thm 4.10). For every stationary S C r, OET implies DIg(T13).
Definition 3.16. Let S be the poset of all pairs (k,B) with the following properties:
1. k is a function such that dom(k) < k;
2. for each o € dom(k), k() is a transitive model of ZF~ of size < max{Xy, |a|}, with k | o € k(a);
3. B is a subset of P(k) of size < dom(k);
(K',B") < (k,B) in'S if the following holds:
(i) ¥ DOk, and B' 2 B;
(i1) for any B € B and any o € dom(k') \ dom(k), BN« € k' (a).
Lemma 3.17 ([18], Prop 1.5). For every stationary S C r, VS = O™,

Let us denote by DI}, (I1}) the principle DI§(II}) when S = {a < k | ¢f(a) = w}. Since $&T holds in L, in
L we have k-Borel* = X1(k). Also there is a < s-closed kT -cc forcing which forces k-Borel* = %1 (k).

Theorem 3.18 ([6], Corollary 3.2). It is consistent that Al (k) C k-Borel" C Y1 (k).

K

As we have seen, the equivalence relations =J;

K _2
=5 —B =L

and =2 play a crucial role. It is clear that DI},(TI3) implies

Question 3.19. Is =], —p :i a theorem of ZFC?

4 A generalized Borel-reducibility counterpart of Shelah’s main gap

Shelah’s Main Gap Theorem states the following.

Theorem 4.1 ([19] Main Gap Theorem). For every T first order complete theory over a countable vocabulary.
Let I(T, o) denote the number of non-isomorphic models of T with cardinality a.. One of the following holds:

1. If T is shallow superstable without DOP and without OTOP, then Yo > 0 I(T,R,) < 3y, (| a |).

2. If T is not superstable, or superstable and deep or with DOP or with OTOP, then for every uncountable
cardinal o, I(T, o) = 2%,
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This gives us a notion of complexity, a theory is more complex if it has more models. Unfortunately, the main
gap also tells us that with this notion of complexity a theory T is either too complex, for every uncountable
cardinal a I(T, ) = 2%, or it is not so complex, i.e. Ya > 0 I(T,R,) < 3y,,(] « |). The aim of study the
Main Gap in the generalized Borel reducibility hierarchy is to obtain a more refined complexity notion in which
different theories have different complexities, and satisfies a counterpart of the Main Gap theorem:

If T\ and Ty are first order complete theories over a countable vocabulary such that Ty satisfies the first item
of the Main Gap and Ty satisfies the second item of the Main Gap theorem, then Ty is less complex than Ts.

With the notions explained in the previous session, we can define the desire complexity notion:

T is as much as complex as Ty if and only =1, — p=r,.

To study this notion of complexity for first order complete theories over countable vocabularies, we will
divide the theories in two classes (as the Main Gap suggested), classifiable and non-classifiable theories. The
only difference is that we will not require a theory to be shallow in order to be classifiable. Some authors require
shallow for classifiable theories, we will see why in our case it make sense to not require it.

Definition 4.2. e A first order complete theory over a countable vocabulary, T, is classifiable if it is super-
stable without DOP and without OTOP.

e A first order complete theory over a countable vocabulary, T, is non-classifiable if it satisfies one of the
following:

1. T is stable unsuperstable;
2. T is superstable with DOP;

3. T 1is superstable with OTOP;
4. T is unstable.

Let us fix a bijection 7 : k<% — k.

Definition 4.3. For every n € k" define the structure A, with domain  as follows.
For every tuple (ay,as, ... ,a,) in &"

(a1,a2,...,a,) € P & the arity of Py, is n and n(w(m,ay,az,...,a,)) > 0.

Definition 4.4. For every n € 2% define the structure A, with domain k as follows.
For every tuple (a1,as,...,a,) in K"

(a1,a9,...,a,) € P,;L“" & the arity of Py, is n and n(w(m, a1, as,...,a,)) = 1.
Notice that the structure A, [ o is not necessary coded by the function n [ .
Exercise 4.1. There is a club Cy such that for all o € Cr, Ay [ 0 = Aypa

With the structures coded by the elements of 2% and k", it is easy to define the isomorphism relation of
structures of size k in both spaces.

Definition 4.5 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary.
We define =24, as the relation

{(0,8) € 5" x r" [(Ay ET, Ac E T, Ay = Ag) or (Ay T, Ag = T)}

~2

Definition 4.6. Assume T is a complete first order theory in a countable vocabulary. We define =% as the
relation

{m, & e2"x2" | (A, ET, Ac =T, A, = A¢) or (A =T, A = T)}.

Notice that 22 <. 22, holds for every theory T. From now on let us denote by 2 both notions =% and
f\/2
=7.

Let us start with the case of classifiable theories. The following is the usual Ehrenfeucht-Fraissé game but

coded in a particular way for our purposes.

Definition 4.7. (Ehrenfeucht-Fraissé game) Fiz {X,},<x an enumeration of the elements of P.(k) and
{fy}+<k an enumeration of all the functions with domain in P.(k) and range in Py(k). For every pair of
structures A and B with domain k and a < k, the EF%(A 4, B [+) is a game played by the players I and I1 as
follows.

In the n-th move, first I choose an ordinal B3, < o such that X, C o, Xg, , C Xg, , and then II an ordinal
0, < a such that dom(fe,),rang(fs,) C a, Xg, < dom(fe,) Nrang(fs,) and fo, , C fo, (if n = 0 then
Xg, . =0 and fo, , =0). The game finishes after w moves. The player II wins if Uic, fo, : A [a— B [a is a
partial isomorphism, otherwise the player I wins.
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We write I + EF5(A [, B o) if I has a winning strategy in the game EF%(A [,,B [). We write IT 1
EFZ(A [4,B [4) if IT has a winning strategy.

Lemma 4.8 ([9], Lemma 2.4). If A and B are structures with domain k, then the following hold:
o II1 EFS(A| kB | k)<= 111 EF(A [, B [a) for club-many a.
o It EF(A|K,B| k)<= 11 EF:(Alqa,Bla) for club-many o.

Proof. Tt is easy to see that if o : k<% — k is a winning strategy for II in the game EF%(A | k,B | ), then
o | <% is a winning strategy for IT in the game EFZ (A [, B |o) if o[a<?*] C a. So II 1+ EF%(A [, B [4) for «
a closed point of o.

We conclude that if IT + EFZ(A | k,B | k), then II + EFZ(A o, B |o) for club-many «. The same holds
for I. To show the other direction, notice that EFZ (A | ,B | k) is a determined game, so if IT doesn’t have
a winning strategy, then I has a winning strategy. Therefore, if IT doesn’t have a winning strategy in the
game EFF (A [ k,B | k), then I 1 EFZ(A [, B [4) for club-many «, and II cannot have a winning strategy in
EFS(A [o, B [o) for club-many o. O

The reason to introduce these games is that we can characterize classifiable theories with these games.

Theorem 4.9 ([19], XIII Theorem 1.4). If T is a classifiable theory, then every two models of T that are
Lo c-equivalent are isomorphic.

Theorem 4.10 ([2], Theorem 10). Lo ,-equivalence is equivalent to EF? -equivalence.

From these two theorems we know that if T is a classifiable theory, then for any A and B models of T" with

domain x,
IIt+EF}(AB) < A>B

ITEF;(A,B) <<= AZB.

From the previous Lemma we know the following two hold for any A and B models of a classifiable theory (with
domain k):

e A~ B <= 111 EFE(A |, B [a) for club-many a.
e AZB<=I1EF:(Al,,B[,) for club-many .
Theorem 4.11 ([2], Theorem 70). If T is a classifiable theory, then =1 is Al(k).

Proof. Notice that the EFY game can be coded as a x-Borel* game taking at the leaves the open sets given by
partial isomorphisms. O

Theorem 4.12 ([2], Theorem 69). Suppose k > 2“. If T is a classifiable shallow theory, then 1 is k-Borel.

Theorem 4.13 ([2], Theorem 71). If T is unstable, or superstable with OTOP, or superstable with DOP and
K > w1, then =1 is not a Al (k) equivalence relation.

Definition 4.14. Let us define the following hierarchy.
e 20 ={X C2%| X is open}
o 119 ={X C2°| X is closed}
°« X0 = {U7<HA7 | Ay € U1§,8<a HOB}
o IIf = {2°\X | X e 20}

Notice that x-Borel= J,.,.+ X5. The smallest ordinal v such that A € X9 UII, is called the Borel rank of
A and denoted by rkp(A). Given a theory T, let us denote by B(k,T) the rank rkp(=r).

Theorem 4.15 ([13], Theorem 1.9 Descriptive Main Gap ). Let k > 2¥. If T is classifiable shallow of depth
a, then B(k,T) < 4a.

Notice that under GCH, for all ,§ > w; such that |y| > |4, K = N1 satisfies
I(T,Ryy5) < Tuy (|7 +0 ) <Rygs

Theorem 4.16 ([13], Proposition 6.7). Let k = X, be such that 3o, (| v |) < k. Suppose Ty is a classifiable
shallow and Ty not. Then =1, —. Zp,.
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Lemma 4.17 ([7], Lemma 2). Let i < K is a regular cardinal and S;; = {a < k| cf(a) = p}. Assume T is a

classifiable theory and p < K is a reqular cardinal. If OK(Sﬁ) holds then =1 s continuously reducible to :Z.

Proof. Let {Dy | o € X'} be a sequence testifying {(S};) and define the function F: 2% — 2~ by

1 ifaeS;NCNCgp, 111 EF(Ay la,As,) and Ay [o=T
0 otherwise.

Fn)(a) = {

Exercise 4.2. . =7 ¢ if and only F(n) =2 F(&).
O

Theorem 4.18 ([2], Theorem 87). Suppose that for all v < k, v < k and T is a stable unsuperstable countable
theory. Then :f)f—>c . ]

Theorem 4.19 ([2], Theorem 79). Suppose that k = At =2 and A\<* = ).
1. If T is unstable or superstable with OTOP, then =3<. .
2. If A\ >2% and T is superstable with DOP, then =3, . O

Theorem 4.20 ([7], Theorem 7). Suppose k = AT, 2% > 2% and A< = \. The following is consistent. If T}
is classifiable and Ty is not. Then there is an embedding of (P(x), Q) to (B*(1T1,T2), —p), where B*(1T1,Ts) is
the set of all k-Borel* equivalence relations strictly between =r, and Zr,.

From the results of the previous section in L, we obtain the following dichotomy.

Theorem 4.21 ([8], Theorem 4.11). (V = L) Suppose that k is the successor of a reqular uncountable cardinal
M. If T is a countable first-order theory in a countable vocabulary, not necessarily complete, then one of the
following holds:

o 7 is Al;

o =1 s Z%—complete.

Theorem 4.22 (Friedman-Hyttinen-Kulikov, [2] Theorem 77). If a first order countable complete theory over
a countable vocabulary T is classifiable, then =2, 4. .

Colored Ordered Trees

To study the non-classifiable theories we need to introduce the coloured trees. Coloured trees are very useful
to reduce = or =7 to =y, for certain  and nonclassifiable theory T' (see [2], [5], [9], [17]). In [2] and [5] the
coloured trees used had height w 4+ 2 and were used to study the case when  is a successor cardinal. In [9]
the coloured trees had height w + 2 and were used to study the case when k is an inaccessible cardinal. In
these lectures we will use the coloured trees of [17], i.e. trees of uncountable height and x inaccessible. Given
a tree ¢, for every x € t we denote the order type of {y € t|ly < z}. Let us define t, = {z € t|ht(z) = a}
and t<o = Ugcqtpg, and denote by = [ « the unique y € ¢ such that y € ¢, and y < z. If 2,y € ¢t and
{z € t|]z < 2} = {z € t|z < y}, then we say that x and y are ~-related, x ~ y, and we denote by [z] the
equivalence class of = for ~. An «, S-tree is a tree ¢ with the following properties:

e |[z]| < a for every x € t.

e All the branches have order type less than 3 in .

e t has a unique root.

e If z,y € t, x and y has no immediate predecessors and x ~ y, then = = y.

Definition 4.23. Let \ be an uncountable cardinal. A coloured tree is a pair (t,c), where t is a kT, (A +2)-tree
and c is a map c : ty — &\{0}.

Definition 4.24. Let (t,c) be a coloured tree, suppose (In)a<w s a collection of subsets of t that satisfies:
e for each a < K, 1, is a downward closed subset of t.
i Ua<n Ia =t

o ifa< B <k, then I, C Ig.
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o if v is a limit ordinal, then I, = U(K,y I,.

e for each a < K the cardinality of I, is less than k.
We call (In)a<x a filtration of t.

Definition 4.25. Let t be a coloured tree and T = (Iy)a<s a filtration of t. Define Hz, € k" as follows.
Fiz o < k. Let By, be the set of all x € ty that are not in I, but x [ 0 € I, for all & < \.

o If B, is non-empty and there is B such that for all x € By, c(x) = B, then let Hz (o)) = 3
o Otherwise let Hz () =0
We will call a filtration good if for every o, B, # () implies that c is constant on B,,.

Lemma 4.26 ([17]). Suppose (to,co) and (t1,c¢1) are isomorphic coloured trees, and T = (Iy)a<k and J =
(Ja)a<w are good filtrations of (to,co) and (t1,c1) respectively. Then Hzi, =% Hgy,

Proof. Let F : (tg,co) — (t1,¢1) be a coloured tree isomorphism. Define FZ = (F[I4])a<x- It is easy to see
that F'[I,] is a downward closed subset of t. Clearly F[I,] C F[Ig] when o < 8 and for v a limit ordinal,
Ua<yF 1) = F[I,]. If z € t; then there exists y € tp and o < & such that F(y) = « and y € I,, therefore
x € F[I,] and Uy F[I,] = t1. Since F is an isomorphism, |F[I,]| = |I,| < & for every a < k. So FZ is a
filtration of ¢;.

For every o, B # () implies that BEZ # (). On the other hand, Z is a good filtration, then when BZ # (), ¢, is
constant on BZ. Since F is colour preserving, c; is constant on BEZ, we conclude that FZ is a good filtration
and Hz 4 (o) = Hpz 1, ().

Notice that F[I,] = J, implies Hz () = H7 4, (). Therefore it is enough to show that C = {a|F[l,] = Jo}
is an A-club. By the definition of a filtration, for every sequence (;)i<g in C, cofinal to v, Jy, = U,y Ja;, =
Uico Flla,] = F[1,], so C is closed. To show that C' is unbounded, choose o < . Define the succession (a;);i<x
by induction. For i = 0, ag = a. For every limit ordinal «, when n is odd let o441 be the least ordinal
bigger than a4, such that F[I, ,.] C Ja. ., ., (such ordinal exists because & is regular, and J and FT are
filtrations, specially |F[I,. ]| < ). For every limit ordinal , when n is even let a.y;,41 be the least ordinal

bigger than a4, such that J, ., C F[l, ,,.,] (such ordinal exists because r is regular, and J and FZ are
filtrations, specially |Ja,| < £). Define ay, = {J;, s, then Jo, = U;, Jo; = Ui, Flla,] = Flla,]. Clearly
Uica Jai = Uicy Flla,] and Uicxa; € C. O

Order the set A X k X k X £ X k lexicographically, (a1, aa, ag, g, as) > (51, B2, B3, Ba, Bs) if for some 1 < k < 5,
ay > B and for every i < k, a; = ;. Order the set (A X k X k X k X K)=* as a tree by inclusion.
Define the tree (Ir,dy) as, Iy the set of all strictly increasing functions from some 6 < A to x and for each 7
with domain A, d¢(n) = f(sup(rang(n))).
For every pair of ordinals @ and 8, @ < 8 < k and i < A define

R(a, B,i) = U {n:1[i,7) = o, B)|n strictly increasing}.
1<j<A

Definition 4.27. Assume k is an inaccessible cardinal. If o < 8 < k and «a, 8,7 # 0, let {P,‘Y)"ﬂh < Kk} be an

enumeration of all downward closed subtrees of R(«, 3,1) for all i, in such a way that each possible coloured tree
. . 0,0 .

appears cofinally often in the enumeration. And the tree Py~ is (Iy,dy).

This enumeration is possible because k is inaccessible; there are at most
|Ujer P(R(a, B,4))| < A x k = k downward closed coloured subtrees, and at most £ x k<" = & coloured trees.
Denote by Q(Pﬁ’ﬂ) the unique ordinal number ¢ such that P$>5 C R(a, B,1).

Definition 4.28. Assume k is an inaccessible cardinal. Define for each f € k" the coloured tree (Jy,cy) by the
following construction.

For every f € k" define J; = (J¢,cs) as the tree of allm:s — A x k%, where s < X\, ordered by extension, and
such that the following conditions hold for alli,j < s:

Denote by n;, 1 < i <5, the functions from s to k that satisfies, n(n) = (m(n),n2(n), ns(n), na(n),ns(n)).

1. nlnelJdy foralln <s.
2. n is strictly increasing with respect to the lexicographical order on A x k*.
8om(i) <m(i+1) <nu(i) + 1.

4. m (i) = 0 implies 12(i) = n3(i) = na(i) = 0.
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9. n2(i) = n3(i) implies na2(i) = 0.

6. m (i) <mu(i+ 1) implies na(i + 1) = n3(i) + na().-

7. For every limit ordinal o, ni(a) = supg<a{ne(B)} for k € {1,2}.
8. m (i) = m(j) implies np(i) = nk(j) for k € {2,3,4}.

9. If for some k <\, [i,j) = ny *{k}, then

ns | i, j) € P:j(( )) 13 (4 ).

Note that 7 implies Q(P:}h( z)) 13 (0 )) =,

10. If s = A, then either

(a) there exists an ordinal number m such that for every k < m ni(k) < ni(m), for every k' > m

m (k) = n1(m), and the color of n is determined by P"Q((WT)) ma(m)

cg(n) = c(ns | [m, )
2 (m). 3 (m)

where ¢ is the colouring function ofP ()

or
(b) there is no such ordinal m and then cy(n) = f(sup(rang(ns))).
Lemma 4.29 ([17]). Assume k is an inaccessible cardinal, then for every f,g € k" the following holds
f=Xg9eJr=J,
Proof. By Lemma 2.4, it is enough to prove the following properties of Jy
1. There is a good filtration Z of Jy, such that Hz ;, =% f.
2. If f =5 g, then Jy = J,.

Notice that for any k € rang(ny) if ns | [i,j) € P:f((z)) 130 when [i,5) = 0y Y(k) and if i + 1 < 7, then ns | [i, )
is strictly increasing. If 01 (i) < n1(¢ + 1), by Definition 2.6 item 6, n2(i + 1) > n3(i) + na(i), so 95(i) < n3(i) <

M2(i+1) <ns(i+1). If o is a limit ordinal, by Definition 2.6 items 7 and 8, n5(8) < n2(8 + 1) < n2(a) < ns(a)
it holds for every 8 < a. Thus 75 is strictly increasing. If n [ n € Jy for every n, then nn € J;. Clearly every
maximal branch has order type A+ 1, every chainn [ 1 Cn [2Cn [ 3 C--- of any length, has a unique limit in
the tree, and every element in tg, < A, has an infinite number of successors (at most ), therefore J; € CT.

For each o < k define JJ%‘ as

J§ ={n € Jylrang(n) C A x (B)* for some B < a}.

Suppose rang(n) = A. As it was mentioned before, 75 is increasing and sup(rang(nz)) > sup(rang(ns)) >
sup(rang(nz)). By Definition 2.6 item 6 sup(rang(nz)) > sup(rang(ns)) and sup(rang(nz)) > sup(rang(ns)),
this lead us to

sup(rang(ns)) < sup(rang(ns)) = sup(rang(ns)) = sup(rang(nz)). (1)
When 7 [ k € J§ holds for every k € A, it can be concluded that sup(rang(ns)) < a, if in addition n ¢ J§, then

sup(rang(ns)) = a. (2)

Claim 4.30. Suppose & € J]?‘ and n € Jy. If dom(§) a successor ordinal smaller than X, £ C n and for every k
in dom(n)\dom(§), m (k) = & (maz(dom(€))) and m (k) > 0, then n € J§.

Proof. Assume §,n € Jy are as in the assumption. Let 8; = &;(maz(dom(§))), for i € {2,3,4}. Since £ € J7,
then there exists 8 < « such that (5, 8s,84 < 8. By Definition 2.6 item 8 for every k € dom(n)\dom(§),
ni(k) = B; for i € {2,3,4}. Therefore, by Definition 2.6 item 9 and the definition of ng’ﬁa, we conclude
ns(k) < B3 < B, son € Jj. O

Claim 4.31. |J¢| =k, J = (J})a<x is a good filtration of J; and Hy ;, =5 f
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Proof. Clearly Jy = Ua<yJf, J§ is a downward closed subset of J¢, and J§ C J when a < . Since k is
inaccessible, we conclude |J p | < Ii and |Jy| = k. Finally, when ~ is a limit ordlnal

T} = {neJg38 < A(rang(n) Cw x (B))}
= {ne JfB3a <~,38 < a(rang(n) C w x (8)*)}
= Ua<’y J]?

Suppose « has cofinality A, and n € Jf\Jf satisfies n [ k € J§¢ for every k < A. By the previous claim, 7
satisfies Definition 2.6 item 10 (a) only if 1, (n) = 0 for every n € A. So 71, 72, 13 and 74 are constant zero, and
cr(n) = ds(ns), where dy is the colouring function of Py° = Iy, ¢(n) = f(sup(rang(ns))). When 7 satisfies
Definition 2.6 item 10 (b), cs(n) = f(sup(rang(ns))).

In both cases, ¢f(n) = f(c). Therefore, if B, # 0 then ¢y is constant on B, and J is a good filtration.

By Definition 2.3 and since J is a good filtration, Hz j, (o) = f(). O

Claim 4.32. If f =5 g, then Jf = J,.

Proof. Let C! C {a < k|f(a) = g(a)} be an A-club testifying f =5 g, and let C' D C’ be the closure of C’
under limits. By induction we are going to construct an isomorphism between J; and J,.

We define continuous increasing sequences («;);<x of ordinals and (Fy, )<, of partial color-preserving isomor-
phism from J¢ to J,; such that:

a) If i is a successor, then «; is a successor ordinal and there exists § € C such that o;—1 < 8 < o; and thus
if 7 is a limit, «; € C.
b) Suppose that ¢ = v + n, where v is a limit ordinal or 0, and n < w is even. Then dom(F,,) = Jo".

¢) Suppose that i = v + n, where v is a limit ordinal or 0, and n < w is odd. Then rang(F,,) = Jgt
d) If dom(&) < A, € € dom(Fy,), n | dom(§) = £ and for every k > dom(&)

m(k) = & (sup(dom(€))) and m (k) > 0
then 1) € dom(Fy,). Similar for rang(Fy,).
e) If £ € dom(Fy,) and k < dom(€), then & | k € dom(F.,).
£) For all n € dom(F,,), dom(n) = dom(Fy, (n)).

For every ordinal o denote by M (a) the ordinal that is order isomorphic to the lexicographic order of A x a.

First step (i=0).

Let ap = B+ 1 for some § € C. Let v be an ordinal such that there is a coloured tree isomorphism
h: P,?’M(B) — JJ?O and Q(PS’M(B)) = 0. It is easy to see that such v exists, by the way our enumeration
was chosen.

Since Pf,) M) and J¢ are closed under initial segments, then |dom(h=1(n))| = |dom(n)|. Also both domains

are intervals containing zero, therefore dom(h=1(n)) = dom(n).
Define Fy, (1) for n € J3° as follows, let Fy, (1) be the function § with dom(§) = dom(n), and for all £ < dom(§)

o &(k) =h™(n)(k)
To check that & € J,;, we will check every item of Definition 2.6. Since rang(Fu,) = {1} x {0} x {M(8)} x {~}

PS’M(m, ¢ satisfies 1. Also & = h™1(n) € PS’M(B), by definition of P,‘;"B, we now that &5 is strictly increasing
with respect to the lexicographic order, then & satisfies item 2. Notice that £ is constant in every component
except for &5, therefore ¢ satisfies the items 3, 6, 7, 8, 10 (a). Clearly &1(@) # 0, so & satisfies item 4. Since

&o(k) = 0 for every k, then ¢ satisfies 5. Notice that [0,\) = & (1) but peek), (k) = P»(,) MB) for every k,

&a(k)
therefore &5 € P§2(((()))) €0) and & satisfies 7.

Let us show that the conditions a)-f) are satisfied, the conditions a) and c¢) are clearly satisfied. By the way
Fo, was defined, dom(Fy,) = J¢° and dom(n) = dom(Fy,(n)), these are the conditions b), e) and f). Since
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dom(Fa,) = J¢°, the Claim 2.7.1 implies d) for dom(F,). For d) with rang(Fa,), suppose & € rang(Fa,)
and n € J, are as in the assumption. Then 7;(k) = & (k) = 1 for every k < dom(n), by 8 in J,; we have that

na(k) = &a(k) = 0, n3(k) = Es(k) = M(B) and (k) = &4(k) = v for every k < dom(n). By 9in J,, n; € Py
and since rang(F,,) = {1} x {0} x {M(8)} x {v} x PS’M(B), we can conclude that n € rang(Fy,).

Odd successor step.

Suppose that j < k is a successor ordinal such that j = 8; + n; for some limit ordinal (or 0) 5; and an odd
integer n;. Assume «; and F,, are defined for every I < j satisfying the conditions a)-f).

Let a; = 84 1 where 8 € C is such that 8 > «a; 1 and rang(Fy, ;) C Jf, such a [ exists because
Irang(F,,_,)| < 2!%-1l and & is strongly inaccessible.

When 7 € rang(F,,;_,) has domain m < A, define

W(n) = {¢ldom(¢) = [m,s),m < s < A\,n"(m,((m)) ¢ rang(Fo, ,) and n~ ¢ € Jg}

with the color function cy () (¢) = ¢4(n~¢) for every ¢ € W(n) with s = X\. Denote ¢ = F;! (n), a =
&(m —1) + & (m —1) (if m is a limit ordinal, then o = supg<n&2(0)) and 0 = a + M(«;). Now choose an
ordinal ~, such that Q(Po"e) = m and there is an isomorphism h,, : P%I’g — W(n). We will define F,,; by
defining its inverse such that rang(Fy,) = Jy".

Each n € Jg” satisfies one of the followmgs

(*) n € rang(Fu,_,)-
(**) Im < dom(n)(n [ m € rang(Fa;_,) An [ (m+1) ¢ rang(Fa,_,)).
(**) Vm < dom(n)(n | (m +1) € rang(Fu,_,) An ¢ rang(Fa,_,))-

We define § = F, L(n) as follows. There are three cases:

Case 1) satisfies (x )

Define ¢(n) = Fa_J () (n) for all n < dom(n).

Case 7 satisfies ().

This case is divided in two subcases, when m is limit ordinal and when m is successor ordinal. Let m witnesses
(**) for n and suppose m is a successor ordinal. For every n < dom(§)

e If n <m, then {(n) = F; 1 (n ] m)(n).

Qj—1

e For every n > m. Let
(m—-1)+1
— &a(n) =&(m—1) +&(m — 1)
(

Note that, n [ [m,dom(n)) is an element of W (n | m), this makes possible the definition of &;.

Let us check the items of Definition 2.6 to see that £ € J¢. Clearly item 1 is satisfied. By induction hypothesis,
& I'm is increasing, & (m) =& (m —1) + 1 s0 (m — 1) < &(m), and & is constant on [m, \) for k € {1,2,3,4},
since h_1 ()€ P"‘ ¥ then &5 is increasing, and we conclude that ¢ is increasing with respect to the lexicographic
order, so § satlsﬁes 1tem 2. Also we conclude & (i) < & (i+1) <& (2) + 1, so € satisfies item 3. For every ¢ < A,
&(7) = 0 implies i < m, so £(i) = Faj1,1<77 I m)(#) and by the induction hypothesis £ satisfies item 4. By the
induction hypothesis, £ [ m € Jy, since {3(n) = £3(m — 1) + &4(m — 1) holds for every n > m, we conclude that
¢ satisfies 5. By the induction hypothesis, for every i +1 < m, & (7)) < &(i + 1) implies & (i + 1) > &3(i) + &4(4),
on the other hand & (i) = &1(j) implies & (i) = & (4) for k € {2,3,4}, clearly &(m) > &3(m — 1) + & (m — 1)
and &x(i) = &, (i + 1) for i > m and k € {2, 3,4}, then £ satisfies items 6 and 8.

By the induction hypothesis, £ [ m € Jy, since {1(n) = & (m — 1) + 1 and &(n) = &(m — 1) + &(m — 1)
hold for every n > m, we conclude that ¢ satisfies 7. Suppose [i,5) = & (k) for some k in rang(¢). Either

j<morm =i Ifj<m, by the induction hypothesis & | [i,7) € ng((z)) 53(1), if [i,7) = [m,dom(§)), then
&1 [6,4) = h;rlm(n [ [m,dom(§))) € ng((;n)) £a(m) , & thus satisfies item 9. Since & is constant on [m, \), £

satisfies 10 (a). Finally by item 10 (a) when dom(() =X cs(§) = c(& | [m,N)), where ¢ is the color of

ng((;”)) S0 Gince & | [m,A) = h_m( [ [m, ), ¢f(§) = c(h;ﬁm(n [ [m,\))) and since h is an isomorphism,
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cr(€) = cwr (0 1 [m, X)) = cg(n).
Let m witnesses (**) for  and suppose m is a limit ordinal. For every n < dom(§)

o If n < m, then &(n) = F;L (n ] m)(n).

Qj—1

e For every n > m. Let

= supp<m&1(0)
= supg<m&2(0)

= &(n) = Iy, (0 1 [m, dom(n)))(n)

Note that, n [ [m,dom(n)) is an element of W (n | m), this makes possible the definition of 5.

Let us check the items of Definition 2.6 to see that £ € Jy. Clearly item 1 is satisfied. By induction hypothesis,
& | m is increasing, & (m) = sup9<m§1(9) so £(0) < &(m) for every 0 < m, and & is constant on [m, A) for
k € {1,2,3,4}, since h_1 m(n) € P“ , then &5 is increasing, and we conclude that £ is increasing with respect
to the lexmographm order so & satlsﬁes item 2. Also we conclude & (i) < & (i + 1) < & (i) + 1, so £ satisfies
item 3. For every i < A, & (i) = 0 implies i < m, so £(i) = Fajl_l( I m)(¢) and by the induction hypoth-
esis ¢ satisfies item 4. By the induction hypothesis, £ | m € J¢, since &(n) = supo<m&2(6) holds for every
n > m, we conclude that ¢ satisfies 5. By the induction hypothesis, for every i + 1 < m, & (i) < & (i + 1)
implies &3(i + 1) > &3(i) + £4(7), on the other hand & (7) = &1(j) implies &k (7) = &k (j) for k € {2,3,4}, clearly
&a(m) > suppem&3(0) and &k (i) = &k (j) for 7,4 > m and k € {2,3,4}, then £ satisfies items 6 and 8.

By the induction hypothesis, £ [ m € Jy, since &1 (n) = supg<m&i(8) and &(n) = supg<m&2(f) hold for ev-
ery n > m, we conclude that ¢ satisfies 7. Suppose [i,j) = & (k) for some k in rang(¢). Either j < m
or m = i, notice that if i < m < j, then n [ (m +1) € rang(F,,_,)). If j < m, by the induction hypoth-

esis & | [i,7) € PEGSW it [i,5) = [m,dom(€)), then & | [i,4) = hylb,(n | [m,dom())) € PE(m)=tm),

¢ thus satisfies item 9. Since ¢ is constant on [m,\), & satisfies 10 (a). Finally by item 10 (a) When
dom(¢) = A, ¢5(§) = ¢(& | [m, A)), where c is the color of ng((;@))’&(m). Since &5 | [m, A) = h;rlm(n I m, A)),
cr (&) = c(hy,; L.(n 1 [m,)\))) and since h is an isomorphism, cf(€) = ey (1) (1 | [, X)) = cg(n).

77L
Case 1) satisfies (x * ).
Clearly dom(n) = A, by the induction hypothesis and condition d), rang(n) = A, otherwise n € rang(Fy,_,).
Let Fa_jl(n) =& = Un<>\FaJ .(n T n), by the induction hypothesis, ¢ is well defined. Since for every n < A,

n € Jr, then £ € Jr. Let us check that ¢ =c . First note that '~!otherwise by the induction
&l J, then £ € Jy. L heck that c¢(& q(n). Fi h{J?’ h by the ind

hypothesis f),
F. [n)= U nlin=
a] 1 U Qj— 1
n<\ n<

giving us n € rang(Fy,_,). By the equation (2), sup(rang({s)) = - Q-1 and ¢ satisfies item 10 b) in J, therefore
cr(€) = f(aj—1). Also by the definition of J§ and since § [ n € Jff ' for every n < A, aj_1 is a limit ordinal and

by condition a), j — 1 is a limit ordinal and a;_; € C. The conditions b) and c) ensure rang(Fy, ;) = JaJ L
This implies, 1 ¢ J?j_l. By the equation (2), sup(rang(ns)) = co;j—1. Therefore a;;_; has cofinality A, ;1 6 C”
and f(a;—1) = g(a;_1). By item 10 b) in Jg, ¢4(n) = g(aj—1) = flaj—1) = cf(§).

Next we show that F|,, is a color preserving partial isomorphism. We already showed that F,,, preserve the
colors, so we only need to show that

NS Ee FL(n) C FLHE) 3)

From left to right.

When 7,¢ € rang(F,,_,), the induction hypothesis implies (3) from left to right. If n € rang(F,,_,) and
¢ ¢ rang(F,,_,), the construction implies (3) from left to right. Let us assume n,§ ¢ rang(Fy,,_,), then n,&
satisfy (**). Let m; and ms be the respective ordinal numbers that witness (**) for n and &, respectively. Notice
that ma < dom(n), otherwise, n € rang(Fy,_,). If m1 < mq, clearly n € rang(F,,_,) what is not the case. A
similar argument shows that ms < mj cannot hold. We conclude that m; = ms and by the construction of
Fo,, Fcz.l(??) - Fa_ll(g)

From right to left.

When 7,¢ € rang(F,,_,), the induction hypothesis implies (3) from right to left. If n € rang(F,,_,) and
¢ ¢ rang(F,,_,), the construction implies (3) from right to left. Let us assume n,¢ ¢ rang(F,,_,), then n,&
satisfy (**). Let m; and mq be the respective ordinal numbers that witness (**) for n and &, respectively.
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Notice that my < dom(n), otherwise, F;'(n) = F; ' (n) and n € rang(F,,_,). Let us denote by 6 the inverse
map F ! (e.g. 0(¢) = F;1(€)), and the first component by 6, (e.g. 01(¢) = F, (1)

(673
If mq < mg and ms is a successor ordinal, then

O1(n)(m2 —1) = (0(§) Im,)1(ma2 — 1)
< 01(€ Tmy)(m2 — 1) +1
= 01(n)(m2)
= 6i(n)(m2 —1)

If my < mg and mo is a limit ordinal, then

= (0(8) lma)1(7)

< Supn<m291 (5 rmg)(n)
= 01(n)(m2)

= 0:(m)(y).

This cannot hold. A similar argument shows that mo < m; cannot hold. We conclude that m; = mso.
By the induction hypothesis F;* (n [ m1) = Fi 1 (€ | mg) implies ) [ my = £ | my (also implies hyp,

Qi—1

hetm,)- Since FL1 (n | my)(n) = F; ' (n)(n) for all n < my, we only need to prove that n | [m1,dom(n)) C

73

Yy € [mi,ma) 601(n)(7)

& | [ma,dom(€)). But hypp, is an isomorphism and F, (n)s(n) = F; '(£)s(n) for every n > my, so h;rlml (n 1

(€27

[y, dom(n)))(n) = by, (€ 1 [ma, dom(€)))(n). Therefore 1 | [mi, dom(n)) € € | [ma, dom(¢€)).

Let us check that this three constructions satisfy the conditions a)-f).

When 1 is a successor we have a;_1 < 8 < a; = f+1 for some 8 € C, this is the condition a). Clearly the three
cases satisfy b). We defined F; ! according to (*), (**), or (***); since every n € Jg satisfies one of these, we
conclude rang(F,,) = Jgy7 which is the condition c).

Let us show that the F,, satisfy condition d). Let & and n be as in the assumptions of condition d) for
domain. Notice that if £& € dom(F,,_,) then the induction hypothesis ensure that n € dom(F,,;). Suppose
& ¢ dom(Fy,_,), then Fy, (&) ¢ rang(F,,_,). Since dom(§) < A, so Fy, () satisfies (**). Let m be the number
witnessing it. If m is a limit ordinal, then dom(§) > m + 1, therefore £ | m+1 € J?i and by Claim 2.7.1
n € Jy'. If m is a successor ordinal, then { € J¢* and by Claim 2.7.1 n € J§*. By item 8 in Ji*, ny is
constant on [m,dom(n)) for k € {2,3,4}, now by Definition 2.6 item 9 in J¢*, 15 [ [m,dom(n)) € P,‘Y)‘g’gn. Let
C = hffm(n[m,dom(n)))v then n= Fa_il(Fai (6 r m>A<) and ne d0m<Faz‘)'

Using the same argument, the condition d) can be proved.

For the conditions e) and f), notice that & was constructed such that dom(§) = dom(n) and £ [ k € dom(Fy,)
which are these conditions.

Even successor step.

Suppose that j < k is a successor ordinal such that j = ; + n; for some limit ordinal (or 0) §; and an even
integer n;. Assume «; and F,, are defined for every ! < j satisfying conditions a)-f).

Let a; = f+1 where 8 € C such that 8 > a;_1 and dom(F,,_,) C Jf, such a f3 exists because |dom(Fy,_,)| <
2lei-1l and & is strongly inaccessible. The construction of Fy; such that dom(Fy,;) = J}” follows as in the odd
successor step, with the equivalent definitions for dom(F,;) and JJ?“ Notice that for every n € J?j, there are
only the following cases:

(*) n € dom(Fy,_,).
(**) Im < dom(n)(n [ m € dom(Fy,_,) An | (m+1)¢&dom(Fy,_,)).

Limit step.

Assume j is a limit ordinal. Let o;; = U;< oy and Fo, = UijFy,, clearly Fy; : J;fj — Jg4 and satisfies condition
c). Since for i successor, a; is the successor of an ordinal in C, then «; € C' and satisfies the condition a). Also
F,; is a partial isomorphism. Remember that U;<; J;” = J}xj , the same for J,. By the induction hypothesis
and the conditions b) and c) for i < j, we have dom(F,,) = J?" (this is the condition b)) and rang(F,,) = Jg°.
This and Claim 2.7.1 ensure that condition d) is satisfied. By the induction hypothesis, for every i < j, F,,
satisfies conditions e) and f), then F,,; satisfies conditions e) and f). O

Define F' = U;<, Fy,, clearly, it is an isomorphism between J; and J,. O
Definition 4.33. Let K. be the class of models (A, <, (Pn)n<~, <, ), where:

1. there is a linear order (I,<j) such that A C I=7;
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. A is closed under initial segment;
. < 1s the initial segment relation;

2

3

4. N, &) is the mazimal common initial segment of n and &;

5. let lg(n) be the length of n (i.e. the domain of n) and P, = {n € A|lg(n) =n} forn <~;
6

. for every n € A with lg(n) < v, define Suca(n) as {£ € A|n <& & lg(&) =lg(n)+1}. If € <, then
there is m € A such that &, ¢ € Suca(n);

7. n < & if and only if either n < & or there is ( € A and x,y such that n = (" {(x), £ = (y), and z <; y;
8. If n and & have no immediate predecessor and {{ € A|( <n}={C € A|{ <&}, thenn=¢.

An ordered tree is an element of K,.. An ordered coloured tree is a tree T' € K, with a color function
c¢:ty — . For any L-structure M we denote by at the set of atomic formulas of £ and by bs the set of basic
formulas of £ (atomic formulas and negation of atomic formulas). For all L-structure M, a € M, and B C M
we define

tpps(a, B, M) = {p(x,b) | M |= ¢(a,b),p € bs,b € B}.

In the same way tp,.(a, B, M) is defined.

Definition 4.34. Let I be a linear order of size k. We say that I is k-colorable if there is a function F : I — K
such that for all B C I, |B| < k, b € I\B, and p = tpys(b, B, I) such that the following hold: For all a € &,
HaellakEp& Fla)=a}| =k.

Theorem 4.35 ([15], Theorem 2.25). There is a (< k, bs)-stable (k, bs,bs)-nice k-colorable linear order.

Notice that J? = {@} and dom() = 0. Let us denote by Acc(k) = {a < k| @ = 0 or a is a limit ordinal}.
For all v € Ace(k) and 1 € J§¢ with dom(n) = m < w define

Wi ={¢ | dom(C) = [m,s),m < s <w, "¢ eI, (C ] {m}) ¢ J7}.
Notice that by the way J; was constructed, for every n € J¢ with finite domain and o < k, the set
{(01792,03,94,95) € (w X 1{4)\(0.) X a4) | 77/\(91,02,93,94,05) S J?+w}

is either empty or has size w. Let o) be an enumeration of this set, when this set is not empty.

Let us denote by T = (k X w X Acc(k) X w x K X k X k X k)<Y, For every ¢ € T there are func-
tions {& € k=¥ | 0 < i < 8} such that for all i < 8, dom(&;) = dom(§) and for all n € dom(€), &£(n) =

(&1(n), &(n), &3(n), E4(n), &5(n), &6(n), & (n), Es(n)). For every € € T let us denote (&4, &5, &6, &7, &s) by €.

Definition 4.36. For all a € Acc(k) and n € T withn € Jg, dom(n) =m < w define I';; as follows:
Ifn € J§¢, then ') is the set of elements of T such that:

L&Im=n,

2. € [ dom(§)\m € Wy,

3. &3 is constant on dom(€)\m,

4. &(m) = a,

5. for all n € dom(€)\m, let &(n) be the unique r < w such that 0@ (r) = &(n), where ( =& | n.
If7 ¢ J¢, then Ty = 0.

For n € T with j € Jy, dom(n) = m < w define

rm= {J 15

acAcc(k)

Finally we can define A7 by induction. Let 7}(0) = {0} and for all n < w,

Ty(n+1) =Ty(n)U U T'(n),
nETy(n) dom(n)=n
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for n = w,
Tr(w) = |J Tr(n).
n<w

For 0 < ¢ < 8 let us denote by s;(n) = sup{n;(n) | n < w} and s, (n) = sup{s;(n) | i < 8}, finally
Al = T(w)U{n € T | dom(n) = w,¥m < w(n [ m € Tf(w))}.

Define the color function dy by ds(n) = c;(7) if s1(n) < su(n) and df(n) = f(s1(n)) otherwise.

It is clear that A is closed under initial segments, indeed the relations <, (Pn)n<w, and A of Definition 4.33
have a canonical interpretation in A7.

Let I be the k-colorable linear order given by Fact 4.35.

Let us proceed to define <[ Sucys(n). Let 52 : I — & be a k-coloration of I.

For any n € A’ with domain m, we will define the order <[ Suc4s(n) such that it is isomorphic to I. By
the construction of A/, an isomorphism between {(0y,602,03) € k x w x Acc(k) | 03 > n3(m — 1)} and I induces
an order in <[ Sucys(n).

Definition 4.37. Recall that 5 is a r-coloration of I. For all 0,a < r fix the bijections Gy : {(62,05) €
w x Acc(k) | 03 > 0} — k and Hy : 2~ '[a] — k. Notice that these functions exist because H is a k-coloration
of I and there are k tuples (62,03).

Let us define Gg : {(01,02,03) € k x w x Ace(k) | 03 > 0} — I by Go((61,62,63)) = a where a is the unique
element that satisfies:

[ ] é@((eg,eg)) =«
[ I:Ia(a) == 91.

For any n € A7 with domain m < w and n3(m — 1) = 6, the isomorphism G induces an order in Sucs (7).
Let us define <[ Suc4s(n) as the induced order given by Gy. It is clear that (A, <, (P,)n<w, <, A) is isomorphic
to a subtree of =% as in Definition 4.33.

Lemma 4.38 ([15], Theorem 3.11). Suppose I is a k-colorable linear order. Then for all f,g € 2%,
f =2 g e A=A

Tw

Define the tree Ay C Af by: z € Ay if and only if x is not a leaf of A7 or x is a leaf such that dg(z) = 1.

Successor cardinals

We will use the generalized Ehrenfeucht-Mostowski models, see [19] Chapter VII. 2 or [10] Section 8.

Definition 4.39 (Generalized Ehrenfeucht-Mostowski models). We say that a function ® is proper for K., if
there is a vocabulary L' and for each A € K., model My, and tuple as, s € A, of elements of M;the following
two hold:

e cvery element of M is an interpretation of some p(as), where u is a LY -term;
b tpat(a57 Q)a Ml) = (I)(tpat(sa ®7 A))

Notice that for each A, the previous conditions determine My up to isomorphism. We may assume My, as,
s € A, are unique for each A. We denote My by EM*(A, ®). We call EM'(A,®) an Ehrenfeucht-Mostowski
model.

Suppose T is a countable complete theory in a countable vocabulary £, £! a Skolemization of £, and T
the Skolemization of 7' by £!. If there is ® a proper function for K3\, then for every A € K., we will denote

by EM(A, ®) the L-reduction of EM!(A, ®). The following result ensure the existence of a proper function ®
for unsuperstable theories T and 7 = w.

Theorem 4.40 (Shelah, [19] Theorem 1.3, proof in [19] Chapter VII 3). Suppose £ C L' are vocabularies, T
is a complete first order theory in L, T" is a complete theory in L' extending T and with Skolem-functions.
Suppose T* is unsuperstable and {¢,(z,y,) | n < w} witnesses this. Then there is a function ® proper such
that for all A € K&, EM'(A,®) is a model of T", and for s € P}, t € P, EM'(A,®) |= ¢n(as,as) if and
only if A= s <t.

For every f € 2%, let us denote by A/ the model EM (A, ®).

Lemma 4.41 ([15], Lemma 4.28). If T is a countable complete unsuperstable theory over a countable vocabulary,
then for all f,g € 2%, f =2 g if and only if AT and A9 are isomorphic.

Theorem 4.42 ([15], Corollary 4.12). Suppose k = AT = 2* and \* = X\. If T is a countable complete
classifiable theory, and Ts is a countable complete unsuperstable theory, then =, —. =Zr, and =71, 4. =1, .

In [16], this construction is extended to other non-classifiable theories.
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Inaccessible cardinals

For k an inaccessible cardinal, only two results are known in ZFC. Clearly the use of diamond principles like
DI§(I13) would give us the same results for unsuperstable theories.

Definition 4.43. Let T be a stable theory. T has the orthogonal chain property (OCP), if there exist \.(T)-
saturated models of T of power \.(T), {Ai}icw, 6 & Uicw Ai, such that t(a,U;<wA;) is not algebraic for every
J <w, t(a,UicwA;) L Aj, and for every i < j, A; C Aj;.

Exercise 4.3. If T has the OCP, then T is unsuperstable.

Lemma 4.44 ([9], Corollary 5.10). Let x be an inaccessible cardinal. Assume T is stable and has the OCP,
then =— ..

Theorem 4.45 ([9], Corollary 5.11). Let k be an inaccessible cardinal. Assume Ty is a classifiable theory and
T, is a stable theory with the OCP, then =, —. =Zr,.

Definition 4.46. We say that a superstable theory T has the strong dimensional order property (S-DOP) if the
following holds:

There are F%-saturated models (M;);<3, My C My N Ma, such that My Ly, Mo, and for every Ms E2-prime
model over My U Ms, there is a non-algebraic type p € S(M3) orthogonal to My and to Ms, such that it does
not fork over My U Ms.

Lemma 4.47 ([17], Corollary 5.1). Let k be an inaccessible cardinal. Assume T is a theory with S-DOP and
let X be (2¥)*, then =§— ..

Theorem 4.48 ([17], Corollary 5.2). Let k be an inaccessible cardinal. Assume Ty is a classifiable theory and
T, is a superstable theory with S-DOP, then =p, —. =r,.

Question 4.49. Let k be an inaccessible cardinal, Ty a classifiable theory, and Ty a non-classifiable theory. Is
1 <. X, a theorem of ZFC?

5 Questions

Question 5.1. Is the following consistent Al(k) = k-Borel* C 1(k)?
Question 5.2. Is =], —p :i a theorem of ZFC?

Question 5.3. Let k be an inaccessible cardinal, Ty a classifiable theory, and To a non-classifiable theory. Is
1 <. 21, a theorem of ZFC?
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