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Aim of the talk

▶ Talk is of expository nature
▶ Addressed to non proof-theorists.
▶ Will keep examples simple.
▶ Several fairytales which are independent from each other.
▶ Will highlight some applications of mathematics within logic.
▶ Project is open ended.
▶ Interested students, PhD students, and Postdocs may join in.
▶ Search for international collaboration is intended.
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Phase transitions for Gödel incompleteness

Phase transition in real life

▶ Phase transitions in logic?
▶ First or second order phase transitions?
▶ Which methods can be used to classify them?
▶ Can physical methods like renormalization be useful here?
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Outline

▶ Peano arithmetic
▶ Historical overview: Hilbert, Gödel,
▶ The big picture behind phase transitions for incompleteness
▶ Ordinals for beginners
▶ Ackermann function
▶ Goodstein sequences
▶ Ramseyan theorems
▶ Slowly well orderedness
▶ Kruskal’s tree theorem
▶ Bolzano Weierstrass and Abel’s theorem about integrals
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Peano arithmetic

How to model the natural numbers?
Via Peano arithmetic PA.
Have symbols for 0,S ,+ and · together with the axioms:
▶ ∀x [¬Sx = 0].
▶ ∀x , y [Sx = Sy → x = y ].

▶ ∀x [x + 0 = x ].
▶ ∀x , y [x + Sy = S(x + y)].
▶ ∀x [x · 0 = 0].
▶ ∀x , y [x · Sy = x · y + x ].
▶ For all formulas φ: (φ(0) ∧ ∀x [φ(x) → φ(Sx)]) → ∀yφ(y).

PA is good for developing discrete mathematics.
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Compactness

Is every countable model of PA isomorphic to the standard model?

No, by compactness.
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Compactness

Is every countable model of PA isomorphic to the standard model?
No, by compactness.

Andreas Weiermann Ghent University Phase transitions for Gödel incompleteness
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Inconsistency in näive set theory

Comprehension [Cantor]: For all properties φ there is a set s such
that s = {x : φ(x)}.

Russell: Let s := {x : x ̸∈ x}. Then s ∈ s ⇐⇒ s ̸∈ s.

Possible way out: Intuitionism. Predicativism.
ZFC: Replace comprehension by separation/replacement.
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Hilbert: Let’s save mathematics via proof theory

▶ Formalize all of mathematics:
Is every assertion true in the standard model provable in PA?

▶ Prove the consistency of mathematics by finitary means.
Is the consistency of PA provable in PA?
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Enter Gödel

Is every assertion true in the standard model provable in PA?
Gödel one simplified: No
Is the consistency of PA provable in PA?
Gödel two simplified: No
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Phase transitions in logic

Assumptions:
▶ A(h) is true for all values of the order parameter h.
▶ A(h) is provable for small values of h.
▶ A(h) is unprovable for large enough values of h.
▶ Unprovability of A(h) is monotone in h.

Then we are looking for the threshold for the transition from
provability to unprovability.
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Ordinals for beginners

Following Cantor ordinals model counting into the infinite:
0 < 1 < 2 < . . . < ω < ω + 1 < . . . < ω + ω . . ..

In our talk we model an interesting segment of ordinals by unary
number-theoretic functions under eventual domination.
Let E be the least class of unary functions such that
▶ m 7→ 0 ∈ E

▶ If g , h ∈ E then m 7→ mg(m) + h(m) ∈ E .

As for Hardy’s orders of infinity define g < h if there exists a K
such that for all m > K we have g(m) < h(m).

Then ⟨E , <⟩ is a well order. So < is a linear ordering and there is
no sequence f0, f1, . . . ∈ E such that fi+1 < fi for all i .
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Phase transitions for Gödel incompleteness

Ordinals for beginners

How can we model the elements of E with natural numbers?

Let ck be the function m 7→ k . Then
c0 < c1 < . . . < id < id + 1 < . . . < id + id < . . ..
Write ωf for the function m 7→ mf (m).

Theorem
▶ Every α ∈ E can be written uniquely as α = ωα1 + · · ·+ ωαn

where α > α1 ≥ . . . ≥ αn.
▶ If α = ωα1 + · · ·+ ωαn where α > α1 ≥ . . . ≥ αn and

β = ωβ1 + · · ·+ ωβm where β > β1 ≥ . . . ≥ βm then α < β iff
either n < m and (∀i ≤ n)[αi = βi ], or
there exists an i ≤ min(m, n) such that
αi < βi and (∀j < i)[αj = βj ].
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Phase transitions for Gödel incompleteness
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Gentzen

Assume that ⟨E , <⟩ is order isomorphic to ⟨N,≺⟩.
I (α) := ∀x [(∀y(y ≺ xφ(y)) → φ(x)] → ∀x ≺ αφ(x)
I := ∀x [(∀y(y ≺ xφ(y)) → φ(x)] → ∀xφ(x)
Gentzen:
▶ PA proves I (α) for any α ∈ E .
▶ PA does not prove I .

This is first example of a (meta mathematical) phase transition for
Gödel incompleteness.
PA+ I proves the consistency of PA.
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Phase transition for the Ackermann function

A0(n) := n + 1.

Ad+1(n) := An
d(n) =

n−times︷ ︸︸ ︷
Ad(. . .Ad(n)).

A(n) := An(n).

Then Ad is primitive recursive for any fixed d but the function A is
not prim rec.

Introduce a parameter h : N → N.

A(h)0(n) := n + 1.

A(h)d+1(n) := A(h)
h(n)
d (n).

A(h)(n) := A(h)n(n).

Then for h = id the function A(h) is not prim rec but A(h) is prim
rec for h = const. Is there a non trivial phase transition?
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Phase transition for Ackermann function

We round h up to natural number values.

Theorem

▶ If h(n) = d
√
n then A(h) is not prim rec.

▶ If h(n) = log(n) then A(h) is prim rec.

For a non decreasing unbounded function h let
h−1(n) := min{m : h(m) ≥ n}. Then for quickly growing functions
h the induced function h−1 is slowly growing.

Theorem (Omri and W.)

▶ If h(n) = A−1(n)
√
n then A(h) is not prim rec.

▶ If h(n) = A−1
d

(n)
√
n for some fixed d then A(h) is prim rec.

Proof idea: A−1(n) behaves like a constant for the branches of the
Ackermann function.
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Phase transition for the generalized Ackermann function
Let g be strictly increasing such that g(n) ≥ n + 1.

A(g , h)0(n) := g(n).

A(g , h)d+1(n) := A(g , h)
h(n)
d (n).

A(g , h)(n) := A(g , h)n(n).

A classification result for a general function g seems out of reach

but our search was successful. Let g ′(n) := gn(n).

Theorem

▶ If h(n) = A−1(n)
√
(g ′)−1(n) then A(g , h) is not prim rec.

▶ If h(n) = A−1
d

(n)
√
(g ′)−1(n) for some fixed d then A(g , h) is

prim rec.

This theorem has applications to the pigeonhole principle.
Moreover this theorem extends to transfinite extensions Aα(g , h)
but we will skip further details here.
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Phase transition for the Goodstein principle

Fix a natural number k ≥ 2.

Every positive integer m can be
written uniquely as m = k r · p + q where k r ≤ m < k r+1 and
p < k and q < k r . Define 0{k} := 0 and
m{k} := (k + 1)r{k} · p + q{k}. Define m0 := m and if ml > 0 let
ml+1 := ml{2 + l} − 1. If ml = 0 then ml+1 := 0.
These numbers grow quickly in the beginning and every laptop will
make you believe that ml is diverging for not too small starting
values of m.
Example: m = 22 + 2. m0 = m. m1 = 33 + 3 − 1 = 33 + 2. etc.

Theorem
Let G stand for ∀m∃l(ml = 0).
▶ The assertion G is true.
▶ But PA ̸⊢ G .

Mentioned by Penrose.
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Phase transition for the Goodstein principle

Fix a natural number k ≥ 2. Every positive integer m can be
written uniquely as m = k r · p + q where k r ≤ m < k r+1 and
p < k and q < k r . Define 0{k} := 0 and
m{k} := (k + 1)r{k} · p + q{k}. Define m0 := m and if ml > 0 let
ml+1 := ml{2 + l} − 1. If ml = 0 then ml+1 := 0.

These numbers grow quickly in the beginning and every laptop will
make you believe that ml is diverging for not too small starting
values of m.
Example: m = 22 + 2. m0 = m. m1 = 33 + 3 − 1 = 33 + 2. etc.

Theorem
Let G stand for ∀m∃l(ml = 0).
▶ The assertion G is true.
▶ But PA ̸⊢ G .

Mentioned by Penrose.

Andreas Weiermann Ghent University Phase transitions for Gödel incompleteness
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Phase transition for the Goodstein principle
Let us introduce a function parameter h for G where h : N → N is
non decreasing.
Every positive integer m can be written uniquely as
m = (2 + h(k))r · p + q where (2 + h(k))r ≤ m < (2 + h(k))r+1

and p < 2 + h(k) and q < (2 + h(k))r . Define 0{k}h := 0 and
m{k}k := (2 + h(k + 1))r{k}

h · p + q{k}h. Define mh
0 := m and if

mh
l > 0 let mh

l+1 := mh
l {l}h − 1. If ml = 0 then mh

l+1 := 0.

Theorem

Let G (h) stand for ∀m∃l(mh
l = 0). Let log stand for the binary

length function. log1 := log and logd+1 := log(logd). Let log∗(m)
be the least number d such that logd(m) ≤ 1.
▶ The assertion G (h) is true for all h.
▶ PA ⊢ G (log∗).
▶ But for any fixed d PA ̸⊢ G (logd).
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Phase transition for the Paris Harrington principle

We identify R with the set {0, 1, . . . ,R − 1}. With [X ]d we denote
the set of d-element subsets of X .
The finite Ramsey theorem RT states:
∀d , c ,m ∃R∀P : [R]d → c∃H ⊆ R[P ↾ [H]d = const ∧ |H| ≥ m].
The least R depending on d , c ,m is denoted by Rd

c (m).

Theorem
▶ RT is true.
▶ PA ⊢ RT .
▶ There exists a constant const such that

Rd
c (m) ≤ 2d−1(const · c ·m).

No phase transition yet.
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Phase transition for the Paris Harrington principle

The Paris Harrington thm PH states: ∀d , c ,m∃R∀P : [R]d → c
∃H ⊆ R[P ↾ [H]d = const ∧ |H| ≥ max{min(H),m}].

Theorem (Paris Harrington)

▶ PH is true.
▶ PA ⊬ PH.

This indicates that a phase transition might be possible.
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Phase transition for the Paris Harrington principle

The Paris Harrington theorem PH(h) states: ∀d , c ,m∃R∀P :
[R]d → c∃H ⊆ R[P ↾ [H]d = const ∧ |H| ≥ max{h(min(H)),m}].

Theorem (W.)

▶ PH(h) is true.
▶ PA ⊢ PH(log∗).
▶ If d is fixed then PA ⊬ PH(logd).

Similar results hold for the regressive Ramsey theorem and the
canonical Ramsey theorem. Threshold is similar to the one for
Goodstein. Further refinements are possible.
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Phase transition for the Paris Harrington principle

Proof of PA ⊢ PH(log∗).
Let m, d , c be given and put R := Rd ·2

c (m · 2). W.l.o.g m = d = c .
Let P : [R]d → c be given. Then by RT there exists H such that
P ↾ [H]d = const and 2m ≤ |H|. But now we have the following
insightful conclusion using the Erdös Rado bound
log∗(minH) ≤ log∗(R) ≤ log∗(22m) = 2m ≤ |H|.

Insight: Finite combinatorics may indicate the threshold function.
The threshold emerges as the functional inverse of the bounding
function.
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Phase transition for the Paris Harrington principle

Proof of PA ⊢ PH(log∗).
Let m, d , c be given and put R := Rd ·2

c (m · 2). W.l.o.g m = d = c .
Let P : [R]d → c be given. Then by RT there exists H such that
P ↾ [H]d = const and 2m ≤ |H|. But now we have the following
insightful conclusion using the Erdös Rado bound
log∗(minH) ≤ log∗(R) ≤ log∗(22m) = 2m ≤ |H|.

Insight: Finite combinatorics may indicate the threshold function.
The threshold emerges as the functional inverse of the bounding
function.

Andreas Weiermann Ghent University Phase transitions for Gödel incompleteness
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Ordinal counting

Let us consider ordinals in E . Let Nα := n + Nα1 + · · ·+ Nαn if
α = ωα1 + · · ·+ ωαn where α > α1 ≥ . . . ≥ αn.
Then for all d the set of all α ∈ E with Nα ≤ d is finite (bounded
by an exponential upper bound in n).
Let cα(n) = #{β < α : Nβ = n}.
Then cωd (n) ∼ const · nd−1.
What about other values of cα(n)?

Theorem
Let ω1 = ω and ωd+1 = ωωd .

▶ cωω(n) ∼ e
π
√

2
3 ·n

4
√

3n
following Hardy and Ramanujan.

▶ ln(cωd+2(n)) ∼ π2

6 · n
lnd (n)

.

Proof by additive number theory, generating functions (Odlycko).
Spin off to zero one laws for ordinals.
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Ordinal counting

Let us consider ordinals in E . Let Nα := n + Nα1 + · · ·+ Nαn if
α = ωα1 + · · ·+ ωαn where α > α1 ≥ . . . ≥ αn.
Then for all d the set of all α ∈ E with Nα ≤ d is finite (bounded
by an exponential upper bound in n).
Let cα(n) = #{β < α : Nβ = n}.
Then cωd (n) ∼ const · nd−1.
What about other values of cα(n)?

Theorem
Let ω1 = ω and ωd+1 = ωωd .

▶ cωω(n) ∼

e
π
√

2
3 ·n

4
√

3n
following Hardy and Ramanujan.

▶ ln(cωd+2(n)) ∼ π2

6 · n
lnd (n)

.

Proof by additive number theory, generating functions (Odlycko).
Spin off to zero one laws for ordinals.

Andreas Weiermann Ghent University Phase transitions for Gödel incompleteness
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Phase transitions for Gödel incompleteness

Slowly well orderedness a la Friedman

Let SWO be the following assertion.
∀K∃M∀α1, . . . , αM [(∀i ≤M(Nαi ≤K + i))→∃i < M(αi ≤ αi+1)].

Theorem (Friedman)

▶ SWO is true.
▶ PA ⊬ SWO.
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Slowly well orderedness a la Friedman

Let SWO(h) be the following assertion.
∀K∃M∀α1, . . . , αM [(∀i ≤M(Nαi ≤K+h(i)))→∃i<M(αi ≤αi+1)].

Theorem (W.)

▶ PA ⊢ SWO(log · log∗).
▶ PA ⊬ SWO(log · logd).

Proof: f = log · logd is the inverse of the counting function cωd+2

which yields the provability part by counting. For the unprovability
part we apply "renormalization" to Friedman’s result for f = id .

We can also vary the count function. If Nα is given by a canonical
Gödel numbering we can apply multiplicative number theory
(Dirichlet generating functions) and Tauberian theory.
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Kruskal’s theorem

A finite tree is a finite partial order ⟨T ,≤T ⟩ such that
▶ T has a minimum r such that ∀t ∈ T (r ≤T t) and
▶ such that for all t ∈ T the set {s ∈ T : s ≤ t} is totally

(linearly) ordered.

Then for s, t ∈ T there exists inf(s, t) ∈ T .
A one to one function e : T → T ′ is called a homeomorphic
embedding if for all s, t ∈ T we have
e(infT (s, t)) = infT ′(e(s), e(t)). We say T � T ′ if there exists a
homeomorphic embedding of T into T ′.

Theorem (Kruskal’s theorem KT)

For every ω-sequence of finite trees Ti there exists i , j < ω such
that i < j and Ti � Tj .

Friedman showed that KT is not provable in ATR0.
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Friedman’s miniaturization of Kruskal’s theorem FKT

Let N(T ) denote the number of nodes in T . Let FKT stand for:
∀K∃M∀T1,. . .,TM [(∀i≤M(N(Ti ) ≤ K + i)) → ∃i < j<MTi�Tj ].

Theorem (Friedman)

▶ FKT is true
▶ PA ⊬ FKT . Even stronger ATR0 ⊬ FKT
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Friedman’s miniaturization of Kruskal’s theorem FKT

Let h : N → N. The assertion FKT (h) stands for:
∀K∃M∀T1, . . . ,TM

[
(∀i ≤ M)[(N(Ti ) ≤ K + h(i)] → (∃i , j)[i <

j < M ∧ Ti � Tj ]
]
.

Theorem
▶ FKT (h) is true.
▶ If h = const then PA ⊢ FKT (h).
▶ PA ⊬ FKT (id).

Theorem (Matousek and Loebl)

Let hr (i) := r · log2(i).
▶ If r ≤ 0.5 then PA ⊢ FKT (hr ).
▶ If r ≥ 4 then PA ⊬ FKT (hr ).

Any guesses for the threshold?
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Let c = 0.63957768999472013311 . . .

and hr (i) := r · log(i).

Theorem (W.)

▶ If r ≤ c then PA ⊢ FKT (hr ).
▶ If r > c then PA ⊬ FKT (hr ).

What is c and how did I find it?
With a search machine I looked around 2000 for "finite tree". I
found Otter’s constant α = 2.955765 . . . on Stephen Finch’s pages
about mathematical constants. Voila: c = 1

log2(α)
. What is α? Let

T (z) =
∑∞

n=0 tnz
n be a solution of T (z) = z · exp(

∑∞
i=1 T (z i )/i).

Let ρ be the radius of convergence of T . Then α = 1/ρ.
What is tn? We have tn ∼ const · αn

n3/2 . What is tn?
tn = #{T : N(T ) = n}.
The threshold function hc is morally the same as the inverse
function of n 7→ tn. The concrete digits of c after 5 entries behind
the . have been calculated by Moritz Firsching.
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The scaling window for FKT

A0(x) := x + 1.
Aα+1(x) := Ax

α(x).

Aλ(x) := Aλ[x](x) if λ is of limit type .

AE (x) := Aωx (x).

Here λ[x ] converges to λ canonically. So ωβ+1[x ] = ωβ · x and λ[x ]
is defined by continuity otherwise.
The functions Aα are quickly growing.
Let hα(i) = (c + 1/A−1

α (i)) · log2(i) and
hE (i) = (c + 1/A−1

E (i)) · log2(i). Using Goh and Schmutz (Random
struct. and alg.) Gordeev and I could show the following result.

Theorem
▶ If α ∈ E then PA ⊢ FKT (hα).
▶ PA ⊬ FKT (hE ).
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Theorem (Bolzano Weierstraß)

Let ⟨xi : i < ω⟩ be an infinite sequence of real numbers from the
closed unit interval [0, 1]. Then there exist k1 < k2 < . . . such that
the subsequence ⟨xki : i < ω⟩ converges.

Theorem (Monotone convergence theorem)

Let ⟨xi : i < ω⟩ be a non decreasing infinite sequence of real
numbers from the closed unit interval [0, 1].
Then the sequence ⟨xi : i < ω⟩ converges.
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Friedman’s BW

Theorem (modified Bolzano Weierstraß (Friedman))

Let f : ω → R>0. Let ⟨xi : i < ω⟩ be an infinite sequence from the
closed unit interval [0, 1].

Then there exist k1 < k2 < . . . such that |xki+1 − xki+2 | < f (ki )
holds for all i ≥ 1.

Proof: By BW pick a subsequence ⟨xmi : i < ω⟩ which converges to
a limit c . Then construct the indices ki by recursion.
What is the connection with the following?

Theorem (Abel)

Let d ≥ 0. Let logd (expd) be the d-fold iteration of log (exp
resp.).
▶

∫∞
expd (1)

1
x ·log(x)·...·logd (x)dx = +∞.

▶
∫∞
expd (1)

1
x ·log(x)·...·(logd (x))1+ε dx < +∞ for ε > 0.
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Phase transitions for Gödel incompleteness
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Friedman’s BW

Theorem (modified Bolzano Weierstraß (Friedman))

Let f : ω → R>0. Let ⟨xi : i < ω⟩ be an infinite sequence from the
closed unit interval [0, 1].
Then there exist k1 < k2 < . . . such that |xki+1 − xki+2 | < f (ki )
holds for all i ≥ 1.

Proof: By BW pick a subsequence ⟨xmi : i < ω⟩ which converges to
a limit c . Then construct the indices ki by recursion.
What is the connection with the following?

Theorem (Abel)

Let d ≥ 0. Let logd (expd) be the d-fold iteration of log (exp
resp.).

▶
∫∞
expd (1)

1
x ·log(x)·...·logd (x)dx = +∞.

▶
∫∞
expd (1)

1
x ·log(x)·...·(logd (x))1+ε dx < +∞ for ε > 0.

Andreas Weiermann Ghent University Phase transitions for Gödel incompleteness
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Phase transitions for Gödel incompleteness

Friedman’s miniaturization of BW

Theorem (Friedman)

For all K ≥ 3 there exists M such for all sequences x1, x2, . . . , xM
from the closed unit interval [0, 1] there exist k1 < . . . < kK ≤ M
such that |xki+1 − xki+2 | < 1/(ki )2 holds for all i ≤ K − 2.
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Friedman’s miniaturization of BW

Theorem (Friedman)

Let f : ω → R>0. The following assertion FBW (f ) is true. For all
K ≥ 3 there exists M such for all sequences x1, x2, . . . , xM from the
closed unit interval [0, 1] there exist k1 < . . . < kK ≤ M such that
|xki+1 − xki+2 | < f (ki ) holds for all i ≤ K − 2.

Friedman’s Proof:
Apply the compactness of the Hilbert cube [0, 1]N (Tychonov).
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Phase transitions for Gödel incompleteness

Connections with the Ackermann function

Define by recursion on m and subsidiary recursion on n:

Ack0(m) = m + 1. Ackn+1(0) = Ackn(1) and
Ackn+1(m + 1) = Ackn(Ackn+1(m)).

Theorem (Friedman)

Let f (i) = 1
i2

. For K ≥ 10, the least M(K ) for FBW (f ) exceeds
AckK−8(64). In particular, the least M(13) exceeds Ack5(64).

There are also neat Ackermannian upper bounds on M(K ).
What happens when we modify the estimate 1/(ki )2? Obviously
any strictly positive function of ki will make these statements hold,
but the issue is the size of the associated constants M(K ).
If we we use the estimate 1

(ki )1+ε , where ε > 0, then (following
Friedman unpublished) we obtain roughly the same Ackermannian
upper and lower bounds.
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Phase transitions for Gödel incompleteness

Friedman’s miniaturization of BW

Theorem (Friedman)

Let f (i) := log(i)/i . Then the least M(K ) for FBW (f ) is bounded
by an exponential function.

Proof. By a simple bisection argument.

Friedman’s challenge from 1999: How does M(K ) behave for
f (i) = 1

i and f (i) = 1
i log(i)?

Question: Can we improve on the Ackermannian upper bounds for
f (i) = 1

i and f (i) = 1
i log(i)?
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Phase transitions for Gödel incompleteness
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Phase transitions for Gödel incompleteness

Friedman’s monotone convergence principle

Assume that f is strictly positive. Let FMC (f ) be the following
assertion: For all K ≥ 3 there exists M such for all weakly
increasing sequences x1 ≤ x2 ≤ . . . ≤ xM from the closed unit
interval [0, 1] there exist k1 < . . . < kK ≤ M such that
|xki+1 − xki+2 | < f (ki ) holds for all i ≤ K − 2.

Theorem (W.)

▶ Let f (i) = 1
i log(i) . Then the least M(K ) in FMC (f ) is

bounded from above by a double exponential function.
▶ Let f (i) = 1

i(log(i))1+ε . Then the least M(K ) in FMC (f ) is
Ackermannian.
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Friedman’s miniaturization of BW

Theorem (W.)

Fix d < ω. Let logd(i) denote the d-th iterate of log.
▶ Let f (i) = 1

i ·log(i)·...·logd (i) . Then the least M(K ) in FMC (f ) is
bounded by a d + 1-times iterated exponential function.

▶ Let fd(i) = A−1
d (i)− A−1

d (i − 1) and where Ad refers to the
d-th branch of the Ackermann function, and −1 refers to
taking functional inverses. Then the least M(K ) in FMC (f ) is
bounded by a primitive recursive function.

▶ Let f (i) = 1
i ·log(i)·...·(logd (i))1+ε . Then the least M(K ) in

FMC (f ) is Ackermannian.
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Friedman’s miniaturization of BW

Theorem (W.)

Fix d < ω. Let logd(i) denote the d-th iterate of log.
▶ Let f (i) = 1

i ·log(i)·...·logd (i) . Then the least M(K ) in FMC (f ) is
bounded by a d + 1-times iterated exponential function.

▶ Let fd(i) = A−1
d (i)− A−1

d (i − 1) and where Ad refers to the
d-th branch of the Ackermann function, and −1 refers to
taking functional inverses. Then the least M(K ) in FMC (f ) is
bounded by a primitive recursive function.

▶ Let f (i) = 1
i ·log(i)·...·(logd (i))1+ε . Then the least M(K ) in

FMC (f ) is Ackermannian.

Andreas Weiermann Ghent University Phase transitions for Gödel incompleteness
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Now I got stuck for quite some time.

In the Weihrauch degrees there is a gap between BW and MC .
So I tried for six months to build up a long (much longer as the
great wall) sequence with a fractal structure for f (i) = 1/i .
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Solution to Friedman’s problem

Theorem (W.)

Fix d < ω. Let logd(i) denote the d-th iterate of log.
▶ Let f (i) = 1

i ·log(i)·...·logd (i) . Then the least M(K ) in FBW (f ) is
bounded by a d + 2-times iterated exponential function. This
already answers Friedman’s question.

▶ Let fd(i) = A−1
d (i)− A−1

d (i − 1) and where Ad refers to the
d-th branch of the Ackermann function, and −1 refers to
taking functional inverses. Then the least M(K ) in FBW (f ) is
bounded by a primitive recursive function. This answers
Friedman’s questions completely for the lower bounds.

▶ Let f (i) = 1
i ·log(i)·...·logd (i)1+ε . Then the least M(K ) in

FBW (f ) is Ackermannian.

Hint for the proof of the first two assertions: Do the counting
argument for FMC (f ) but now with nested layers.
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Mathematical spin off
General question: What is A−1

d (l)− A−1
d (l − 1)?

Thinking of the
intermediate value theorem one might ask: What is the derivative
of (a smoothened version of) l 7→ A−1

d (l)?
Let F0(x) = 2x and Fd+1(x) = F x

d (x).

Let D0(x) = 1/x and Dd+1(x) =
∏F−1

d+1(x)

i=1 Dd((F
−1
d )i (x)).

Theorem (Strong extension of Abel’s result)

Fix d < ω and ε > 0.
▶

∑∞
i Dd(i) = ∞.

▶
∑∞

i (Dd(i) · 1
(F−1

d+1(i))
1+ε

) < ∞.

Conjecture

A−1
d (l)− A−1

d (l − 1) will be of order Dd(l) as l tends to infinity.
This expression will approximate the derivative of A−1

d .
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We are almost there

Let F0(x) = 2x and Fd+1(x) = F x
d (x).

Let D0(x) = 1/x and Dd+1(x) =
∏F−1

d+1(x)

i=1 Dd((F
−1
d )i (x)).

For d∗ : ω → ω non decreasing let D∗(x) := Dd∗(x)(x).

Conjecture
Let d∗ : ω → ω be non decreasing and definable in one quantifier
induction. Then FBW (D∗) is unprovable with one quantifier
induction (IΣ1) iff d∗ is unbounded.

Left to be done: Classify the phase transition for FBW
version of strength PA. FOM 913.
Also the phase transition for Abel’s theorem could be refined by
looking at a suitably defined Dα.
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Phase transitions for Gödel incompleteness
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Logic/Mathematics at UGent
If you want to learn more details please send me an email under
Andreas.Weiermann at UGent.be.

Students, PhD students and Postdocs are welcome in our team in
Ghent! For funding options please consult:
https://www.research.ugent.be
Also institutional collaboration is welcome!
Here is by the way our logic group:
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