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Throughout this talk, we work in a countable (computable)
relational first-order language L.

Recall that an L-theory is strongly minimal if all subsets definable
(with parameters) in any of its models are finite or cofinite, and
that any strongly minimal theory is ℵ1-categorical.

A strongly minimal theory T is disintegrated if for all M |= T and
all A ⊆ M,

acl(A) =
⋃
a∈A

acl({a})

Zil’ber’s Conjecture (1970’s) stated that any strong minimal theory
is either disintegrated, essentially that of a vector or affine space,
or bi-interpretable with an algebraically closed field.
(We call such theories trichotomous.)

Hrushovski disproved Zil’ber’s Conjecture using so-called
Hrushovski constructions (1991) and Hrushovski fusions (1992).
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The following theorem will allow us to define spectra:

Theorem (Baldwin/Lachlan 1971)

The countable models of any ℵ1-categorical but not totally
categorical theory T in any countable language form an elementary
chain

M0 ≺ M1 ≺ . . . ≺ Mω

where M0 is the prime model and Mω is the countable saturated
model of T .

Definition

The spectrum of computable models of an ℵ1-categorical but not
totally categorical theory T in any computable language is

SCM(T ) = {α ≤ ω | Mα is computable}.

Warning: Mα may have dimension k + α for fixed k > 0.
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We first present all previously known results about upper bounds
for spectra:

Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or
indeed any ℵ1-categorical) theory is a Σ0

3(∅(ω))-subset of [0, ω].
If T is also model complete, its spectrum is a Σ0

4-set.

Theorem (Goncharov/Harizanov/Laskowski/Lempp/McCoy 2003)

A strongly minimal disintegrated theory T is model complete in
the language LM (expanded by constants for a model M of T ).

Corollary

For any strongly minimal disintegrated theory T , the spectrum
of T is a Σ0

5-set.
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Theorem

The following are all previously known spectra of computable
models of strongly minimal (indeed, all ℵ1-categorical) theories:

∅ and [0, ω] (trivial)

{0} (Goncharov 1978) and [0, n] (n ∈ ω, Kudaibergenov 1980)

ω and [1, ω] (Khoussainov/Nies/Shore 1997)

{1} (Nies 1999) and [1, α) (α ≤ ω, Hirschfeldt/Nies 1999)

{ω} (Hirschfeldt/Khoussainov/Semukhin 2006)

{0, ω} (Andrews 2011, the first known non-interval!)

All spectra except for the last are for a strongly minimal
disintegrated theory; the last is by a Hrushovski construction.
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Rank-1 Languages
Ternary Languages

For strongly minimal disintegrated theories T , adding restrictions
on the language yields much better results:

Theorem (Andrews/Medvedev 2014)

If T is a strongly minimal disintegrated theory in a finite
language L, then the possible spectra of computable models are
exactly ∅, [0, ω], and {0}.

This shows that the Herwig/Lempp/Ziegler model was essentially
the only way to construct a nontrivial spectrum for a strongly
minimal disintegrated theory in a finite language.

In addition to disintegrated theories, the result of Andrews/
Medvedev also extends to locally modular expansions of a group
and, by Poizat (1988), to field-like theories, i.e., to “most”
trichotomous theories.
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For infinite languages, the situation is more difficult.

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a (possibly
infinite) binary relational language L, then the possible spectra of
computable models are exactly the following seven sets:
∅, [0, ω], {0}, {1}, {0, 1}, {ω}, and [1, ω].

Our recent work has been motivated by the following sweeping

Conjecture

If T is a strongly minimal disintegrated theory in a (possibly
infinite) relational language L of arity at most n, then there are
only finitely many possible spectra of computable models.

The following constitutes progress toward, and is related to, this
conjecture.
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Morley rank was an important ingredient in our proofs for binary
languages, so we studied it in more detail:

In a strongly minimal model M, a relation R ⊆ Mn

has (Morley) rank 0 if R is finite (and nonempty);

has (Morley) rank at most 1 if for any a ∈ Mn with
M |= R(a), dim(acl(a)) is at most 1, i.e., a does not contain
two mutually generic elements.

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a relational
language L of bounded arity such that in each model M of T , any
relation RM has rank at most 1, then the possible spectra of
computable models are among the following ten sets, of which the
first seven are indeed spectra, even in binary languages:
∅, [0, ω], {0}, {1}, {0, 1}, {ω}, [1, ω], and possibly {0, ω},
{0, 1, ω} and {1, ω}.
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The assumption of bounded arity in the previous theorem was
crucial since we also have:

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a relational
language L (of any arity) such that in each model M of T , any
relation RM has rank at most 1, then the possible spectra of
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Step 1: Reduce to rank 1:

Binary L: If Mα for some α ≥ 2 is computable, then fix two
mutually generic a, b ∈ Mα.

Now RMα has rank 2 iff Mα |= R(a, b), so in that case we
(effectively in R) replace R by ¬R (which is at most rank 1).

Ternary L: If Mα for some α ≥ 3 is computable, then fix three
mutually generic a, b, c ∈ Mα.
First reduce to rank at most 2 as in the binary case.
Then Mα |= ∃∞w R(w , y , z) iff at least two of Mα |= R(a, y , z),
Mα |= R(b, y , z), and Mα |= R(c , y , z) hold, so this is
computable (as are ∃∞w R(x ,w , z) and ∃∞w R(x , y ,w)).
Now all of ∃∞w R(w , y , z), ∃∞w R(x ,w , z), ∃∞w R(x , y ,w),
R(x , y , z)∖ [∃∞w R(w , y , z)∨ ∃∞w R(x ,w , z)∨ ∃∞w R(x , y ,w)],
[∃∞w R(w , y , z) ∨ ∃∞w R(x ,w , z) ∨ ∃∞w R(x , y ,w)]∖ R(x , y , z)
have rank at most 1 and are effectively interdefinable with
R(x , y , z).
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Step 2: Going “down”, easy case:

For a basis B of a strongly minimal disintegrated model Mα, we
have

Mα = acl(∅) ⊔
⊔
b∈B

iacl(b)

where all iacl(b) are pairwise isomorphic.
Suppose

Mβ ⊂ Mα for β < α ≤ ω,

Mα is a computable model,

Mβ is a ∆0
2-subset of Mα, and

Mβ contains an infinite Σ0
1-subset S .

Then Mβ has a computable copy:
Let dim(Mβ) = k + β, fix k + β many mutually generics a in Mβ

and construct acl(a), “discarding mistakes” into S .
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Step 3: Complexity of acl(∅) and iacl(a):

If all relations in Mα are at most rank 1, then both acl(∅) and
iacl(a) (for every generic a ∈ Mα) are Σ0

2-subsets of Mα

(nonuniformly in a); so they are ∆0
2-subsets if α < ω.

Proof:
Define the n-neighborhood Nbhn(a) of a ∈ Mα by recursion:

Nbh0(a) = {a}
Nbhn+1(a) = {b ∈ Mα | ∃c ∈ Nbhn(a) [c, b “directly connected”]}

where c and b are “directly connected” if the binary projection of
an m-ary relation R ∈ L holds (or fails) between c and b but not
between c and cofinitely many elements of Mα, nor between b and
cofinitely many elements of Mα.

Then 0′ can compute canonical indices for Nbhn(a) (uniformly in n
but nonuniformly in a).
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Step 4: “Down”: If all relations in Mα |= T are at most rank 1
and k ∈ SCM(T ) ∩ [2, ω), then k − 1 ∈ SCM(T ):

Assume L is “closed under permutation of variables”.
Define the set of “bad elements”

B = {b ∈ Mk | ∃i ∃∞y ∃z Ri (b, y , z)}

Case I: B is finite: Then for any generic a ∈ Mk , iacl(a) is a
Σ0
1-subset of Mk (finite or infinite).

Case II: B is infinite: Then acl(∅) contains an infinite Σ0
1-subset B

in Mk .

In either case, we can apply the previous steps to see that Mk−1 is
computable.
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Step 5: “Up”: If all relations in Mα |= T are at most rank 1 and
of bounded arity, and if k ∈ SCM(T ) ∩ [2, ω), then
k + 1 ∈ SCM(T ) (uniformly in k; so ω ∈ SCM(T ) as well):

Again, assume L is “closed under permutation of variables”.

Case I: For generic a ∈ Mk , there are infinitely many disjoint
tuples b in Mk such that

Mk |= ∃i
(
Ri (a, b) ∧ ∃<∞x Ri (x , b)

)
Then we can generate a Σ0

1-set of such disjoint tuples and then
construct Mk+1 as Mk ⊔ iacl(g) for a new generic element g .

Case II: Otherwise there is a finite set {h0, . . . , hn} of elements
involved in all Ri : We can then generate a new language L′ of
lower arity consisting of all Ri with fixed hj , and iterate Case I vs.
Case II for L′, etc., until we reach Case I or a binary language.
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Case II: Otherwise there is a finite set {h0, . . . , hn} of elements
involved in all Ri : We can then generate a new language L′ of
lower arity consisting of all Ri with fixed hj , and iterate Case I vs.
Case II for L′, etc., until we reach Case I or a binary language.
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Binary L: We also need to show

{0, 1} ∩ SCM(T ) ̸= ∅ and ω ∈ SCM(T ) =⇒ 2 ∈ SCM(T )

Ternary L: Can only prove

[3, ω) ∩ SCM(T ) ̸= ∅ =⇒ [1, ω] ⊆ SCM(T )

Finally: Several priority arguments to establish new spectra.
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