Phase transition for the late points of random walk

Let X be a simple random walk in \mathbb{Z}_{n}^{d} with $d \geq 3$ and let $t_{\text {cov }}$ be the expected time it takes for X to visit all vertices of the torus. In joint work with Prévost and Rodriguez we study the set \mathcal{L}_{α} of points that have not been visited by time $\alpha t_{\text {cov }}$ and prove that it exhibits a phase transition: there exists α_{*} so that for all $\alpha>\alpha_{*}$ and all $\epsilon>0$ there exists a coupling between \mathcal{L}_{α} and two i.i.d. Bernoulli sets $\mathcal{B}^{ \pm}$on the torus with parameters $n^{-(a \pm \epsilon) d}$ with the property that $\mathcal{B}^{-} \subseteq \mathcal{L}_{\alpha} \subseteq \mathcal{B}^{+}$with probability tending to 1 as $n \rightarrow \infty$. When $\alpha \leq \alpha_{*}$, we prove that there is no such coupling.

