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Definition (ZF)

Let x > 1 be a cardinal. Aset ais <s-blurrily ordinal definable, or
<k-0D, if there is an OD set A such that a € A and A < k. As usual, |
will also write <k-0OD for the class of all sets that are <x-0D.

The set a is hereditarily <x-blurrily ordinal definable, denoted
<k-HOD, iff TC({a}) € <k-0OD. So a € <k-HOD iff a is <x-OD and
a C <k-HOD. Again, | write <xk-HOD for the class of all <k-HOD
sets.
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<k-HOD, iff TC({a}) € <k-0OD. So a € <k-HOD iff a is <x-OD and
a C <k-HOD. Again, | write <xk-HOD for the class of all <k-HOD
sets.

So an object is <k-blurrily ordinal definable if it is one of fewer than
k objects having a property using ordinal parameters.



The case k = 2 is (hereditary) ordinal definability (Godel,
Myhill-Scott).
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The case k = 2 is (hereditary) ordinal definability (Godel,
Myhill-Scott).

The case k = w is (hereditary) ordinal algebraicity (Hamkins, Leahy).

The case k = wy was recently proposed and coined (hereditary)
“nontypicality” (Tzouvaras).



ZF(C) results



Basics

Proposition
Let 2 < k < X be cardinals.

1. OD C <x-0OD C <A-0OD.

2. <k-HOD Is transitive, and HOD C <k-HOD C <\-HOD.
3. ODNH, € <k-HOD.

4. Under AC, H, C <(2<")"-HOD.
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. So under AC, V is the increasing union J,.ccapq <t-HOD.






Proposition (ZF)

Let kK > 2 be a cardinal. Then <xk-HOD is an inner model.






Proof.

Let k > w. It suffices to show that <x-HOD satisfies the following
condition: for every u C <x-HOD, there is a transitive v e <x-HOD
such that u C v and Def({v, €)) C <x-HOD.

So let u € <k-HOD be given. Letu C V,, and set v =V, N <x-HOD.
Clearly, v is transitive, OD and contained in <x-HQOD, so
v € <k-HOD, and u C v.



Proof.
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such that u C v and Def({v, €)) C <x-HOD.

So let u € <k-HOD be given. Letu C V,, and set v =V, N <x-HOD.
Clearly, v is transitive, OD and contained in <x-HQOD, so

v € <k-HOD, and u C v. To show that Def({v, €)) C <x-HOD, let
©(x,y) be a formula, and let d = ag,...,a,_1 € v. We have to show
thatz={x e v | (v,€) | ¢(x,d)} € <xk-HOD. Since

z C v C <k-HOD, it suffices to show that zis <x-OD. For each | < n,
let A; be an OD set containing a; such that i; < k. Since ag; € v, we
may assume that each b € A; is in v, by adding this requirement to
the definition of A; if necessary, and this can be done for every

I < n.
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Let k > w. It suffices to show that <x-HOD satisfies the following
condition: for every u C <x-HOD, there is a transitive v e <x-HOD
such that u C v and Def({v, €)) C <x-HOD.

So let u € <k-HOD be given. Letu C V,, and set v =V, N <x-HOD.
Clearly, v is transitive, OD and contained in <x-HQOD, so

v € <k-HOD, and u C v. To show that Def({v, €)) C <x-HOD, let
©(x,y) be a formula, and let d = ag,...,a,_1 € v. We have to show
thatz={x e v | (v,€) | ¢(x,d)} € <xk-HOD. Since

z C v C <k-HOD, it suffices to show that zis <x-OD. For each | < n,
let A; be an OD set containing a; such that i; < k. Since ag; € v, we
may assume that each b € A; is in v, by adding this requirement to
the definition of A; if necessary, and this can be done for every

I <n. Then zisin the set

B={w|3by €Ag...3bp_1 EAn_r W=1{x€EV]|{V,E) [ pxb)}},
is OD, as Ay, ...,An—1 and v are, and obviously,

@)
Ag-...-Ar_1 < K, as k is an infinite cardinal. O
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Blurry choice

Theorem (ZF)

Let kK > 1 be a cardinal. Then, whenever C € <xk-HOD s a set
consisting of nonempty sets, there is a function f: ¢ —s ([J C]<*)"
such that f € <x-HOD, and such that for every c € C, 0 # f(c) C c.



How close is HOD to blurry HOD?
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How close is HOD to blurry HOD?

Two important notions of closeness are Hamkins' approximation and
cover properties.

Definition

Let M C N be transitive classes, and let k be a cardinal in N.

M satisfies the «-cover property in N if for every set a € N with

a gMandﬁN < K, there isasetc e M such thata C Cand?M < K.
M satisfies the strong «-cover property if this is true for every set
aeNwithaCManda < .

Let a € N be a set with a C M. A set of the form anc¢, wherece M
and T < K, 1S called a x-approximation to a in M. The set a is said
to be k-approximated in M if every k-approximation to a in M
belongs to M. M satisfies the x-approximation property in N if
whenever a € N with a € M is k-approximated in M, then a € M.
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Approximation and cover

Theorem

Let k < X be infinite cardinals. Then HOD satisfies the strong
A-cover property and the A-approximation property in <x-HOD.
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Approximation and cover

Theorem

Let k < X be infinite cardinals. Then HOD satisfies the strong
A-cover property and the A-approximation property in <x-HOD.

Proof.

For the strong A-cover property: let a € <k-HOD, a € HOD, with
y=17< A

Let A be OD with a € A and A < k. Since a C HOD and a= v, We
may assume that for all b € A, b € HOD and b = #, since these
requirements may be added to the definition of A if necessary. Set
c=|JA Thenc<~-A < A cisOD,and ¢c C HOD. Thus, ¢ € HOD,
and clearly, a C c. Since AC holds in HOD, ¢ has a cardinality in
HOD, and hence, TP o )\, because if it were the case that T \,
then A would be collapsed as a cardinal. Note that as a
consequence, since HOD C <k-HOD, it is also true in <xk-HOD that

the cardinality of a is less than \. .
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Proof (cont'd.)

Concerning the A-approximation property, since A\ > x, it suffices to
prove the x-approximation property. So let a € <x-HOD, a € HOD
be k-approximated in HOD. Let A be OD, with a € Aand A < . We
may assume that every b € A is a subset of HOD that's
k-approximated in HOD.
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Concerning the A-approximation property, since A\ > x, it suffices to
prove the x-approximation property. So let a € <x-HOD, a € HOD
be k-approximated in HOD. Let A be OD, with a € Aand A < . We
may assume that every b € A is a subset of HOD that's
k-approximated in HOD. LetT=|JA. Then Tis OD and T C HOD, so
Tis in HOD.

For every ¢ € ([T]<F)HP, the set
Afc={bnc|beA)

Isan OD subset of HOD, and hence an element of HOD. Moreover,
the function F : ([T]<#)"°® — HOD defined by

F(c)=Anc

belongs to HOD as well.
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Proof (cont’d).

Define, for distinct bg, by € A, d(bg, by) to be the least (in the
canonical well-ordering of HOD) element of bg/Ab;. Let

A= {d(bo, b1) | bo, b, € A, bg 75 b1}

Then A € HOD, and A < k.
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Then A € HOD, and A < k. Since k is a cardinal in' V, A < Kk as

well, so that A € ([T]<*)"P. Thus, ArTA € HOD.
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— —HOD
Then A € HOD, and A < k. Since k is a cardinal in' V, A < Kk as
well, so that A € ([T]<#)"9P. Thus, AMA € HOD. Note that if

b,b’ € A are distinct, then bN A # b’ N A.

13



Proof (cont’d).

Define, for distinct bg, by € A, d(bg, by) to be the least (in the
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unique b’ € Anc such that b’ N A = b.
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As a consequence, for A C ¢ € ([T]<*)"°° and b e AT A, there is a
unique b’ € Ancsuch that b’ N A = b. So we can define in HOD:
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Define, for distinct bg, by € A, d(bg, by) to be the least (in the
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well, so that A € ([T]<#)"9P. Thus, AMA € HOD. Note that if
b,b’ € A are distinct, then bN A # b’ N A.

As a consequence, for A C ¢ € ([T]<*)"°° and b e AT A, there is a
unique b’ € Ancsuch that b’ N A = b. So we can define in HOD:

B(b) = J{b" | 3c € ([1<F)"" (A Ccandb’ € Ancand b'nA = b)}.

It follows that B(b) is the unique b € A such that bn A = b. Since
forbe A, b=B(bnA), it follows that

A={B(b)|becAnA}

and hence, A € HOD. In particular, a € HOD. I
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Consequences

Note that the fact that HOD satisfies the w-approximation property in
<w-HOD immediately implies the Hamkins-Leahy result that
HOD = <w-HOD.
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Consequences

Note that the fact that HOD satisfies the w-approximation property in
<w-HOD immediately implies the Hamkins-Leahy result that

HOD = <w-HOD.

Proposition

Let k be an infinite cardinal. If 6 is a limit ordinal with
cf<"MOP(9) > K, then <k-HOD has no length 6 sequence that’s fresh

over HOD.
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Bukovsky's condition

Definition (Bukovsky)

Let M1 C M, be transitive models, and let k be a cardinal in M,.
Then Apry ., () says that whenever f € M, is a function from an
ordinal a to an ordinal g, then there is a function g : « — P(5) In

M, such that for every € < «, f(§) € g(&) and ﬁ% < K.

15



Bukovsky's condition

Definition (Bukovsky)

Let M1 C M, be transitive models, and let k be a cardinal in M,.
Then Apry ., () says that whenever f € M, is a function from an
ordinal a to an ordinal g, then there is a function g : « — P(5) In

M, such that for every € < «, f(§) € g(&) and ﬁ% < K.

The remarkable main theorem of Bukovsky on this condition is the
following.

15



Bukovsky's condition

Definition (Bukovsky)

Let M1 C M, be transitive models, and let k be a cardinal in M,.
Then Apry ., () says that whenever f € M, is a function from an
ordinal a to an ordinal g, then there is a function g : « — P(5) In

M, such that for every € < «, f(§) € g(&) and ﬁ% < K.

The remarkable main theorem of Bukovsky on this condition is the
following.

Theorem (ZFC, Bukovsky 1973)

Suppose M is a transitive inner model of ZFC, and « is an infinite
cardinal. Then the following conditions are equivalent:

1. Vis a forcing extension of M by a k-c.c. forcing notion.

2. Apry v (x) holds.
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Proposition

Let x be a cardinal. Then Apryop ~.-nop (k) holds.

Proof.
| will prove more: if f: d — HOD is a function in <x-HOD with

d € HOD, then there is in HOD a function g : d — HOD such that
——HOD

for every x € d, f(x) € g(x) and g(x) < k.
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=V
To see this, let f be as described. Let Fbe OD withfe Fand F < &,
and such that for every g € F, g : d — HOD.
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Let x be a cardinal. Then Apryop ~.-nop (k) holds.

Proof.

| will prove more: if f: d — HOD is a function in <x-HOD with

d € HOD, then there is in HOD a function g : d — HOD such that
——HOD

for every x € d, f(x) € g(x) and g(x) < k.

=V
To see this, let f be as described. Let Fbe OD withfe Fand F < &,
and such that for every g € F, g : d — HOD. Define a function g
with domain d by

g(x) = {h(x) | h € F}.
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Proposition

Let x be a cardinal. Then Apryop ~.-nop (k) holds.

Proof.

| will prove more: if f: d — HOD is a function in <x-HOD with

d € HOD, then there is in HOD a function g : d — HOD such that
——HOD
for every x € d, f(x) € g(x) and g(x) < k.

To see this, let f be as described. Let F be OD with f € F and I:fv < K,
and such that for every g € F, g : d — HOD. Define a function g
with domain d by

g(x) ={h(x) | h € F}.

——HOD
Then g € HOD, and for x € d, f(x) € g(x) and g(x) < k. So g is as

wished. L
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Consequences

Theorem

Let k be an infinite cardinal. Then the following are equivalent:

1. <k-HOD satisfies the axiom of choice.
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Consequences

Theorem

Let k be an infinite cardinal. Then the following are equivalent:

1. <k-HOD satisfies the axiom of choice.

2. <k-HQOD is a set forcing extension of HOD by a k-c.c. forcing
notion.

Proposition

Let k be an infinite cardinal. Then HOD and <x-HOD have the same
cardinals and cofinalities above &, in the following sense:

1. If Xis a limit ordinal such that cf"9°(\) > &, then
CfHOD()\) — Cf</€‘HOD()\).

2. For A > k, Nis regular in HOD Iff X is regular in <x-HOD.

3. Card™P\ k = Card<"""\ &.
17



Hamkins-Laver without choice

Theorem

Let W be a transitive model satisfying ZF. Let x be a regular cardinal
in W. Let M, M’ € W be transitive models of ZF without
replacement, with # = M N On = M’ N On, and each satisfying: if
k< kandrCEkXxRkIssuch that (k,r) a well-order, then there are
an ordinal « and a function = : kK — « such that

7w :(R,r) — {(a, <) is an isomorphism, and every set of ordinals
has a monotone enumeration. Moreover, suppose both M and M’
satisfy following condition, a form of the axiom of choice: if X = M
or M’ and a € X, then thereisanr C a x a in X such that in W
(equivalently, in V), {a,r) is a well-order.

Let Wy = (V)", and suppose that both M and M’ satisfy the
k-cover and approximation properties in Wy. Suppose, moreover,
that P(k) N M = P(k) N M/, and that (k)M = (k)M = (kT)W.

Then it follows that P(8) N M = P(0) n M.
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More consequences

Theorem

Let A > 2 be a cardinal. Let k > X be regular. Then HOD Is definable
in <A\-HOD using P(x) N HOD as a parameter.
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More consequences

Theorem

Let A > 2 be a cardinal. Let k > X\ be regular. Then HOD Is definable
in <A-HOD using P(x) N HOD as a parameter.

Proposition
Let k be an infinite cardinal, and let A > k be inaccessible in HOD.

1. If X weaRly compact in <k-HOD, then it is weaRly compact in
HOD.

2. If X is measurable in <k-HQOD, then it is measurable in HOD.
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Capturing large cardinals

This shows that <x-HOD does not capture that much more of the
large cardinal structure of V than HOD does. On the one hand, if s IS
Inaccessible, then V,, N <x-HOD = V,,, so that large cardinal
properties of V witnessed by V,. are inherited by <x-HOD. But it was
shown by Cheng, Friedman and Hamkins that it is consistent that a
supercompact cardinal A is not weakly compact in HOD-so if k < A,
then X is not weakly compact in <x-HOD either.
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Definition
A cardinal A > 2 is a leap If

<6-HOD G <A-HOD,

for every cardinal § < A. I'write (A, | « < ©) for the monotone
enumeration of the leaps.
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Definition
A cardinal A > 2 1is a If

<6-HOD G <A-HOD,

for every cardinal § < A. I'write (A, | « < ©) for the monotone
enumeration of the leaps.

Lemma
Leaps have the following properties.
1. The class of leaps is closed in the ordinals.

2. N, if defined, is an uncountable successor cardinal.

3. Successor leaps are successor cardinals.
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Definition
Say that a leap v is a big leap if

( U <5HOD>;<7HOD.

6<vy,6eCard
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Definition
Say that a leap v is a it
|J <é-HOD | S <y-HOD.
0<vy,0e€Card
Theorem

Every leap is big.
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Definition
Say that a leap v is a it
|J <é-HOD | S <y-HOD.
6<vy,6eCard
Theorem

Every leap is big.
More info on limit leaps:

Theorem

If Xis a limit leap, then <\-HOD does not satisfy the axiom of
choice.
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Proof.

Let
T'={k < A| kK Isasuccessor leap}.

For a successor leap k, let k_ be its predecessor leap. For k € T, let
T = ("pw |, ax, Bx) De the least code for an e-minimal element of
<k-HOD \ <x_-HOD.
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Let
T'={k < A| kK Isasuccessor leap}.

For a successor leap k, let k_ be its predecessor leap. For k € T, let
T = ("pw |, ax, Bx) De the least code for an e-minimal element of
<k-HOD \ <k_-HOD. That is, letting A, = {x | Sat(Va.., ¢x ', Bx)},
A, has cardinality less than k, thereisan a € A, such that a is
e-minimal in <k-HOD \ <x_-HOD, and 7, is minimal with these
properties. Let

B, ={x€A;|xise-minimal in <k-HOD \ <x_-HOD}.

So for every b € B, b € <k-HOD, b ¢ <x_-HOD, but b C <x_-HOD.

B= (B, | eT)isOD,and B belongs to <A-HOD, but it is not in
<R-HOD for any cardinal A < X (showing that \ is a big leap).
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Proof (cont’d).

B is a sequence of nonempty sets, and | claim that it has no choice
function in <A-HOD: suppose it did. Let b = (be | kK €T) € <A\-HOD
be such that for every x € T, b, € B,. Since b € <A-HOD, it is
<~-0D, for some cardinal v < \. Let X witness this, that is let X be
OD and of cardinality less than ~, so that b e X Let

Y:XHHBH.

Clearly, Y is still OD, has cardinality less than ~, and has bey.
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B is a sequence of nonempty sets, and | claim that it has no choice
function in <A-HOD: suppose it did. Let b = (be | kK €T) € <A\-HOD
be such that for every x € T, b, € B,. Since b € <A-HOD, it is
<~-0D, for some cardinal v < \. Let X witness this, that is let X be
OD and of cardinality less than ~, so that b e X Let

Y:XHHBH.

Clearly, Y is still OD, has cardinality less than ~, and has bey.
Now pick k € T such that v < k_. | claim that b,, € <x_-HOD, a
contradiction. Namely, let

Z={x(k) | x € Y}.

This is an OD set of cardinality at most Y < ~ < k_,and b, belongs
to it. So b,. Is <k_-0OD. And since b,. € B,,, we know that
b, C <k_-HOD. Thus, b,. € <xk_-HOD, as claimed. O
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Consistency results
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Preserving membership to blurry HOD

Proposition (ZFC)

Suppose that P is a notion of forcing, G is generic for P over V, k Is
a cardinal in V[G], and V is definable in V[G] from a parameter in
<k-0DVIC. Then

<k-0DVY C <k-0DVIO]

and so, <k-HODY C <k-HODVI® gs well,
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Preserving membership to blurry HOD

Proposition (ZFC)

Suppose that P is a notion of forcing, G is generic for P over V, k Is
a cardinal in V[G], and V is definable in V[G] from a parameter in
<k-0DVIC. Then

<k-0DVY C <k-0DVIO]

and so, <k-HODY C <k-HODVI® gs well,

Corollary

Let k be a cardinal, and let IP be a notion of forcing of cardinality =,
where 22") < k. If G is P-generic over V, then

<k-HODY C <k-HODVIO,
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Homogeneity

Definition (a la Dobrinen-Friedman)
Let P be a forcing notion. For p € P, let the cone below p in P be
the set

P<, ={q€P|q<p}

equipped with the restriction of the ordering of P.

P is called cone homogeneous If for any two conditions p,g € P,
there are p” < p and g’ < g such that P<, and P<, are isomorphic.
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Lemma

Let k be a regular cardinal, P a cone homogeneous, <k-closed
forcing notion, and let G C IP be P-generic over V. Then

<r-HODVI® C V.
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Lemma

Let k be a regular cardinal, P a cone homogeneous, <k-closed
forcing notion, and let G C IP be P-generic over V. Then

<k-HODVI® C v,
Note how nicely this lemma generalizes the folklore fact that if P is

cone homogeneous and G C P is generic, then HODVI®l C V - this is
the special case k = w.
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Not adding to blurry HOD

Lemma

Let k be a reqular cardinal, P a cone homogeneous, <k-closed
forcing notion, k& < k a cardinal such that P is <k-0D, and let G C P
be P-generic over V. Then

<k-HODVI® C «k-HODV.

29



Not adding to blurry HOD

Lemma

Let xk be a regular cardinal, P a cone homogeneous, <k-closed
forcing notion, k& < k a cardinal such that P is <k-0D, and let G C P
be P-generic over V. Then

<k-HODVI® C «k-HODV.

Again, note how nicely this generalizes the fact that if P is and OD
forcing notion and G C P is generic, then HODV!) € HODV.
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Cohen forcing

Theorem (ZFC)

Let k be an infinite regular cardinal such that k<" = k, and let G be

generic for P = Add(k,1). If k Is a cardinal less than or equal to 2"
in V[G], then

<k-HODVI® € «k-HODV.
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Corollary

Assume V = L, and let k be an infinite reqular cardinal. If G is
generic for P = Add(k, 1), then

L = HOD"® = <xF-HOD' & <k *+-HOD!® = L[G].

In particular, A% = k.
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Iterated Cohen forcing

Theorem

Assume V = L. Let X be a cardinal, and let ((P; | i < \), (Q; | i < A))
be the reverse Easton iteration whose only nontrivial stages are

when | = k IS an infinite regular cardinal, IFp_ Q, = Add(k,1). Let G
be P = Py-generic over L. Then:

1. for regular k < A, L[G[(x + 1)] = <x**-HOD] and
G(k) € <ktT-HODHE \ <xt-HODC.
2. L = <wi-HODC so wy is not a leap in L[G].

3. for any limit cardinal k < \, Glx € <xtt-HODH\ <x*-HODC!.
So ks aleap in L[G].
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The forcing of Kanovei-Lyubetsky

Kanovei and Lyubetsky formed the finite support product T<% of a
forcing in L, due to Jensen, whose conditions are a certain collection
of perfect trees, ordered by inclusion. This product is a ccc forcing in
L, and forcing with T<% over L adds a sequence X = (x; | i < w) of
reals such that in L[X], {x; | i < w} is the set of T-generic reals over L.
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Proposition

Let X be a T<“-generic sequence over L. Then

1. {x | i <w}is oD

2. {xi | i <w} C <wy-HOD',
3.
A
5

{xi | i <w} € <w-HOD,

. X ¢ <w-HODH
. in L[X], L = HOD = <w-HOD G <wi-HOD G <w,-HOD = V. In

particular, /\é[?] = wy.
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Iterating

Corollary

Assume V = L. Let X be a T<¥-generic sequence over L. WorRing in
L[X], let X be a cardinal, and let ((IP; | i < \), (Q; | i < \)) be the
reverse Easton iteration whose only nontrivial stages are when

I = k IS an uncountable reqgular cardinal, in which case

Fp. Q. = Add(k,1). Let G be P = Px-generic over L[X]. Then:

1. for uncountable reqular k < A, L[K][G](x + 1)] = <x*T-HODHIE]
and G(k) € <kt+-HODIC\ < +-HOD M,
2. L[X] = <w,-HODAI]

3. for any limit cardinal k < )\,
Glk € <kTt-HOD'II\ <, t-HODMIC],

4 {x; | i < w} € <w-HOD'IC byt X ¢ <w,-HOD I,
5. <w-HOD MOl — |
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Remark

Thus, in L[X][G], if wy < k < A, and either x is regular and x < A, or
is a limit cardinal, then ™" is a leap. All limit cardinals up to X are

also leaps, and so are wq and wy.

For example, if A = N, then in L[X][G], all uncountable cardinals up
to and including R, are leaps, as is N, 1.
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Remark

Thus, in L[X][G], if vy < k < )\, and either k is regular and k < A, or
is a limit cardinal, then ™" is a leap. All limit cardinals up to X are

also leaps, and so are wq and wy.

For example, if A = N, then in L[X][G], all uncountable cardinals up
to and including R, are leaps, as is N, 1.

The natural question is how to arrange the successor cardinal of a
limit leap to be a leap, or even how to arrange that the least leap is
the successor of a limit cardinal (it can't be a limit cardinal).
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Homogeneous Souslin trees

Definition (a la Brodksy-Rinot)

Let x be a regular cardinal. A streamlined (or sequential) k-tree is a
set T of functions p such that the domain of p is an ordinal less
than x and the range of p is contained in &, closed under
restrictions to ordinals, ordered by inclusion, such that for every

a < Kk, the a-the level of T, T(a) = {p € T | dom(p) = a} has
cardinality less than & and is nonempty. If p,g € T,thenp L g (p, g
are incompatible) iff neither p C g nor g C p. An antichain in T is a
set A C T of pairwise incompatible elements. T is a k-Souslin tree if
it has no antichain of cardinality «. It is coherent if whenever

p,q € T, then the set d(p,q) = {i € dom(p) Ndom(q) | p(1) # q()} Is
finite. It is uniformly homogeneous if whenever p,g € T and
dom(p) < dom(q), then the function

p*q=pU(ql(dom(g) \ dom(p))) € T. It is uniformly coherent if it
Is coherent and uniformly homogeneous.
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Creating a leap at x* with a x-Souslin tree

Theorem

Let k be a regular uncountable cardinal, and let T be a streamlined,

uniformly coherent k-Souslin tree. Let G C T be T-generic over V.
Then:

1. <k-HODVI® C V.
2. If Tis <x+-HOD'® then G € <xk*-HODVI®!

3. Ifk <k isacardinal and T is <k-0D, then
<Rr-HODVI® C <%-HODV.
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It follows from recent work of Brodsky and Rinot that in L, for every
regular cardinal » that is not weakly compact, there is a streamlined,
uniformly coherent k-Souslin tree in L.
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It follows from recent work of Brodsky and Rinot that in L, for every
regular cardinal » that is not weakly compact, there is a streamlined,
uniformly coherent k-Souslin tree in L.

Hence:

Corollary

Assume V = L, and let A\ be an uncountable regular cardinal that is
not weakly compact. Then there is a A-c.c. forcing extension L[G] of
L such that AJ% = A+,
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It follows from recent work of Brodsky and Rinot that in L, for every
regular cardinal » that is not weakly compact, there is a streamlined,
uniformly coherent k-Souslin tree in L.

Hence:

Corollary

Assume V = L, and let A\ be an uncountable regular cardinal that is
not weakly compact. Then there is a A-c.c. forcing extension L[G] of
L such that AJ% = A+,

Corollary

If ZFC is consistent with the existence of an inaccessible cardinal,
then it is consistent that Aq Is the successor of an inaccessible
cardinal.
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Iterating

Theorem

If ZFC is consistent with the existence of an inaccessible cardinal,
then ZFC is consistent with the existence of a reqular (in fact
inaccessible) limit leap whose successor cardinal is also a leap.
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Prikry forcing

Theorem

Let k be a measurable cardinal, let U be a normal ultrafilter on &, let
IP be the Prikry forcing for U, and let G be P-generic over V. Then
1. <k-HODVI® C V.

2. If Uis <xT-0D'I% then, letting C be the PFikry sequence
corresponding to G, C € <xkT-HOD VIl

3. Ifk <k isacardinal and U is <k-0OD, then
<&-HODV!®l € <&-HODV.
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Theorem

Assume V = L[U], where U is a normal ultrafilter on x. Let P be the
Prikry forcing for U, and let G be P-generic over V. Then

L[U] = HODHI®l = <5-HOD'MIO € < *-HODIE = ([u][q].

In particular, N\g = k™ is the successor of a limit cardinal of
countable cofinality in L[U][G].
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Theorem

If ZFC is consistent with a measurable cardinal, then ZFC is also
consistent with the existence of a singular limit leap of countable
cofinality, whose cardinal successor is a leap.
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Thank you for your attention!
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