Blurry definability

Gunter Fuchs
The City University of New York

Set Theory Seminar KGRC

January 18, 2022

Definition (ZF)

Let $\kappa > 1$ be a cardinal. A set a is $<\kappa$ -blurrily ordinal definable, or $<\kappa$ -OD, if there is an OD set A such that $a \in A$ and $\overline{\overline{A}} < \kappa$. As usual, I will also write $<\kappa$ -OD for the class of all sets that are $<\kappa$ -OD.

The set a is hereditarily $<\kappa$ -blurrily ordinal definable, denoted $<\kappa$ -HOD, iff $TC(\{a\}) \subseteq <\kappa$ -OD. So $a \in <\kappa$ -HOD iff a is $<\kappa$ -OD and $a \subseteq <\kappa$ -HOD. Again, I write $<\kappa$ -HOD for the class of all $<\kappa$ -HOD sets.

Definition (ZF)

Let $\kappa > 1$ be a cardinal. A set a is $<\kappa$ -blurrily ordinal definable, or $<\kappa$ -OD, if there is an OD set A such that $a \in A$ and $\overline{\overline{A}} < \kappa$. As usual, I will also write $<\kappa$ -OD for the class of all sets that are $<\kappa$ -OD.

The set a is hereditarily $<\kappa$ -blurrily ordinal definable, denoted $<\kappa$ -HOD, iff $TC(\{a\}) \subseteq <\kappa$ -OD. So $a \in <\kappa$ -HOD iff a is $<\kappa$ -OD and $a \subseteq <\kappa$ -HOD. Again, I write $<\kappa$ -HOD for the class of all $<\kappa$ -HOD sets.

So an object is $<\kappa$ -blurrily ordinal definable if it is one of fewer than κ objects having a property using ordinal parameters.

History

The case $\kappa=$ 2 is (hereditary) ordinal definability (Gödel, Myhill-Scott).

History

The case $\kappa=2$ is (hereditary) ordinal definability (Gödel, Myhill-Scott).

The case $\kappa=\omega$ is (hereditary) ordinal algebraicity (Hamkins, Leahy).

History

The case $\kappa=2$ is (hereditary) ordinal definability (Gödel, Myhill-Scott).

The case $\kappa = \omega$ is (hereditary) ordinal algebraicity (Hamkins, Leahy).

The case $\kappa = \omega_1$ was recently proposed and coined (hereditary) "nontypicality" (Tzouvaras).

ZF(C) results

Basics

Proposition

Let $2 \le \kappa < \lambda$ be cardinals.

- 1. $OD \subseteq \langle \kappa \text{-}OD \subseteq \langle \lambda \text{-}OD.$
- 2. $<\kappa$ -HOD is transitive, and HOD \subseteq $<\kappa$ -HOD \subseteq $<\lambda$ -HOD.
- 3. $OD \cap H_{\kappa} \subseteq \langle \kappa\text{-HOD.} \rangle$
- 4. Under AC, $H_{\kappa} \subseteq \langle (2^{<\kappa})^+$ -HOD.
- 5. So under AC, V is the increasing union $\bigcup_{\kappa \in \text{Card}} < \kappa$ -HOD.

Theorem (Hamkins-Leahy)

 $<\omega$ -HOD = HOA = HOD.

Proposition (ZF)

Let $\kappa \geq$ 2 be a cardinal. Then $<\kappa$ -HOD is an inner model.

Let $\kappa \geq \omega$. It suffices to show that $<\kappa$ -HOD satisfies the following condition: for every $u \subseteq <\kappa$ -HOD, there is a transitive $v \in <\kappa$ -HOD such that $u \subseteq v$ and $\mathrm{Def}(\langle v, \in \rangle) \subseteq <\kappa$ -HOD.

Let $\kappa \geq \omega$. It suffices to show that $<\kappa$ -HOD satisfies the following condition: for every $u \subseteq <\kappa$ -HOD, there is a transitive $v \in <\kappa$ -HOD such that $u \subseteq v$ and $\mathsf{Def}(\langle v, \in \rangle) \subseteq <\kappa$ -HOD.

So let $u \subseteq <\kappa$ -HOD be given. Let $u \subseteq V_{\alpha}$, and set $v = V_{\alpha} \cap <\kappa$ -HOD. Clearly, v is transitive, OD and contained in $<\kappa$ -HOD, so $v \in <\kappa$ -HOD, and $u \subseteq v$.

Let $\kappa \geq \omega$. It suffices to show that $<\kappa$ -HOD satisfies the following condition: for every $u \subseteq <\kappa$ -HOD, there is a transitive $v \in <\kappa$ -HOD such that $u \subseteq v$ and $\mathsf{Def}(\langle v, \in \rangle) \subseteq <\kappa$ -HOD.

So let $u \subseteq <\kappa$ -HOD be given. Let $u \subseteq V_\alpha$, and set $v = V_\alpha \cap <\kappa$ -HOD. Clearly, v is transitive, OD and contained in $<\kappa$ -HOD, so $v \in <\kappa$ -HOD, and $u \subseteq v$. To show that $\mathrm{Def}(\langle v, \in \rangle) \subseteq <\kappa$ -HOD, let $\varphi(x, \vec{y})$ be a formula, and let $\vec{a} = a_0, \ldots, a_{n-1} \in v$. We have to show that $z = \{x \in v \mid \langle v, \in \rangle \models \varphi(x, \vec{a})\} \in <\kappa$ -HOD. Since $z \subseteq v \subseteq <\kappa$ -HOD, it suffices to show that z is $<\kappa$ -OD. For each i < n, let A_i be an OD set containing a_i such that $\overline{A_i} < \kappa$. Since $a_i \in v$, we may assume that each $b \in A_i$ is in v, by adding this requirement to the definition of A_i if necessary, and this can be done for every i < n.

Let $\kappa \geq \omega$. It suffices to show that $<\kappa$ -HOD satisfies the following condition: for every $u \subseteq <\kappa$ -HOD, there is a transitive $v \in <\kappa$ -HOD such that $u \subseteq v$ and $\mathsf{Def}(\langle v, \in \rangle) \subseteq <\kappa$ -HOD.

So let $u \subseteq <\kappa$ -HOD be given. Let $u \subseteq V_\alpha$, and set $v = V_\alpha \cap <\kappa$ -HOD. Clearly, v is transitive, OD and contained in $<\kappa$ -HOD, so $v \in <\kappa$ -HOD, and $u \subseteq v$. To show that $\mathrm{Def}(\langle v, \in \rangle) \subseteq <\kappa$ -HOD, let $\varphi(x, \vec{y})$ be a formula, and let $\vec{a} = a_0, \ldots, a_{n-1} \in v$. We have to show that $z = \{x \in v \mid \langle v, \in \rangle \models \varphi(x, \vec{a})\} \in <\kappa$ -HOD. Since $z \subseteq v \subseteq <\kappa$ -HOD, it suffices to show that z is $<\kappa$ -OD. For each i < n, let A_i be an OD set containing a_i such that $\overline{A_i} < \kappa$. Since $a_i \in v$, we may assume that each $b \in A_i$ is in v, by adding this requirement to the definition of A_i if necessary, and this can be done for every i < n. Then z is in the set

$$B = \{ w \mid \exists b_0 \in A_0 \dots \exists b_{n-1} \in A_{n-1} \mid w = \{ x \in v \mid \langle v, \in \rangle \models \varphi(x, \vec{b}) \} \},$$

 $\frac{B}{\overline{B}}$ is OD, as A_0, \ldots, A_{n-1} and v are, and obviously, $\overline{\overline{B}} \leq \overline{\overline{A}}_0 \cdot \ldots \cdot \overline{\overline{A}}_{n-1} < \kappa$, as κ is an infinite cardinal.

Blurry choice

Theorem (ZF)

Let $\kappa > 1$ be a cardinal. Then, whenever $C \in <\kappa$ -HOD is a set consisting of nonempty sets, there is a function $f: C \longrightarrow ([\bigcup C]^{<\kappa})^{\mathrm{V}}$ such that $f \in <\kappa$ -HOD, and such that for every $c \in C$, $\emptyset \neq f(c) \subseteq c$.

Two important notions of closeness are Hamkins' approximation and cover properties.

Two important notions of closeness are Hamkins' approximation and cover properties.

Definition

Let $M \subseteq N$ be transitive classes, and let κ be a cardinal in N.

M satisfies the κ -cover property in N if for every set $a \in N$ with $a \subseteq M$ and $\overline{\overline{a}}^N < \kappa$, there is a set $c \in M$ such that $a \subseteq c$ and $\overline{\overline{c}}^M < \kappa$. M satisfies the strong κ -cover property if this is true for every set $a \in N$ with $a \subseteq M$ and $\overline{\overline{a}}^V < \kappa$.

Two important notions of closeness are Hamkins' approximation and cover properties.

Definition

Let $M \subseteq N$ be transitive classes, and let κ be a cardinal in N.

M satisfies the κ -cover property in N if for every set $a \in N$ with $a \subseteq M$ and $\overline{\overline{a}}^N < \kappa$, there is a set $c \in M$ such that $a \subseteq c$ and $\overline{\overline{c}}^M < \kappa$. M satisfies the strong κ -cover property if this is true for every set $a \in N$ with $a \subseteq M$ and $\overline{\overline{a}}^V < \kappa$.

Let $a \in N$ be a set with $a \subseteq M$. A set of the form $a \cap c$, where $c \in M$ and $\overline{c}^M < \kappa$, is called a κ -approximation to a in M. The set a is said to be κ -approximated in M if every κ -approximation to a in M belongs to M. M satisfies the κ -approximation property in N if whenever $a \in N$ with $a \subseteq M$ is κ -approximated in M, then $a \in M$.

Approximation and cover

Theorem

Let $\kappa \leq \lambda$ be infinite cardinals. Then HOD satisfies the strong λ -cover property and the λ -approximation property in $<\kappa$ -HOD.

Approximation and cover

Theorem

Let $\kappa \leq \lambda$ be infinite cardinals. Then HOD satisfies the strong λ -cover property and the λ -approximation property in $<\kappa$ -HOD.

Proof.

For the strong λ -cover property: let $a \in <\kappa$ -HOD, $a \subseteq$ HOD, with $\gamma = \overline{\overline{a}} < \lambda$.

Let A be OD with $a \in A$ and $\overline{A} < \kappa$. Since $a \subseteq \operatorname{HOD}$ and $\overline{a} = \gamma$, we may assume that for all $b \in A$, $b \subseteq \operatorname{HOD}$ and $\overline{b} = \gamma$, since these requirements may be added to the definition of A if necessary. Set $c = \bigcup A$. Then $\overline{c} \leq \gamma \cdot \overline{A} < \lambda$, c is OD, and $c \subseteq \operatorname{HOD}$. Thus, $c \in \operatorname{HOD}$, and clearly, $a \subseteq c$. Since AC holds in HOD, c has a cardinality in HOD, and hence, $\overline{c}^{\operatorname{HOD}} < \lambda$, because if it were the case that $\overline{c}^{\operatorname{HOD}} \geq \lambda$, then λ would be collapsed as a cardinal. Note that as a consequence, since $\operatorname{HOD} \subseteq <\kappa$ -HOD, it is also true in $<\kappa$ -HOD that the cardinality of a is less than λ .

Proof (cont'd.)
Concerning the λ -approximation property, since $\lambda \geq \kappa$, it suffices to prove the κ -approximation property.

Concerning the λ -approximation property, since $\lambda \geq \kappa$, it suffices to prove the κ -approximation property. So let $a \in <\kappa$ -HOD, $a \subseteq \text{HOD}$ be κ -approximated in HOD. Let A be OD, with $a \in A$ and $\overline{A} < \kappa$. We may assume that every $b \in A$ is a subset of HOD that's κ -approximated in HOD.

Concerning the λ -approximation property, since $\lambda \geq \kappa$, it suffices to prove the κ -approximation property. So let $a \in \langle \kappa$ -HOD, $a \subseteq$ HOD be κ -approximated in HOD. Let A be OD, with $a \in A$ and $\overline{A} < \kappa$. We may assume that every $b \in A$ is a subset of HOD that's κ -approximated in HOD. Let $T = \bigcup A$. Then T is OD and $T \subseteq$ HOD, so T is in HOD.

Concerning the λ -approximation property, since $\lambda \geq \kappa$, it suffices to prove the κ -approximation property. So let $a \in <\kappa$ -HOD, $a \subseteq \text{HOD}$ be κ -approximated in HOD. Let A be OD, with $a \in A$ and $\overline{A} < \kappa$. We may assume that every $b \in A$ is a subset of HOD that's κ -approximated in HOD. Let $T = \bigcup A$. Then T is OD and $T \subseteq \text{HOD}$, so T is in HOD.

For every $c \in ([T]^{<\kappa})^{HOD}$, the set

$$A \sqcap c = \{b \cap c \mid b \in A\}$$

is an OD subset of HOD, and hence an element of HOD.

Concerning the λ -approximation property, since $\lambda \geq \kappa$, it suffices to prove the κ -approximation property. So let $a \in <\kappa$ -HOD, $a \subseteq \text{HOD}$ be κ -approximated in HOD. Let A be OD, with $a \in A$ and $\overline{A} < \kappa$. We may assume that every $b \in A$ is a subset of HOD that's κ -approximated in HOD. Let $T = \bigcup A$. Then T is OD and $T \subseteq \text{HOD}$, so T is in HOD.

For every $c \in ([T]^{<\kappa})^{HOD}$, the set

$$A \sqcap c = \{b \cap c \mid b \in A\}$$

is an OD subset of HOD, and hence an element of HOD. Moreover, the function $F:([T]^{<\kappa})^{HOD}\longrightarrow HOD$ defined by

$$F(c) = A \sqcap c$$

belongs to HOD as well.

Define, for distinct $b_0, b_1 \in A$, $d(b_0, b_1)$ to be the least (in the canonical well-ordering of HOD) element of $b_0 \triangle b_1$. Let

$$\Delta = \{d(b_0, b_1) \mid b_0, b_1 \in A, b_0 \neq b_1\}.$$

Then $\Delta \in \mathsf{HOD}$, and $\overline{\overline{\Delta}} < \kappa$.

Define, for distinct $b_0, b_1 \in A$, $d(b_0, b_1)$ to be the least (in the canonical well-ordering of HOD) element of $b_0 \triangle b_1$. Let

$$\Delta = \{d(b_0, b_1) \mid b_0, b_1 \in A, b_0 \neq b_1\}.$$

Then $\Delta \in \text{HOD}$, and $\overline{\overline{\Delta}} < \kappa$. Since κ is a cardinal in V, $\overline{\overline{\Delta}}^{\text{HOD}} < \kappa$ as well, so that $\Delta \in ([T]^{<\kappa})^{\text{HOD}}$. Thus, $A \sqcap \Delta \in \text{HOD}$.

Define, for distinct $b_0, b_1 \in A$, $d(b_0, b_1)$ to be the least (in the canonical well-ordering of HOD) element of $b_0 \triangle b_1$. Let

$$\Delta = \{d(b_0, b_1) \mid b_0, b_1 \in A, b_0 \neq b_1\}.$$

Then $\Delta \in \text{HOD}$, and $\overline{\overline{\Delta}} < \kappa$. Since κ is a cardinal in V, $\overline{\overline{\Delta}}^{\text{HOD}} < \kappa$ as well, so that $\Delta \in ([T]^{<\kappa})^{\text{HOD}}$. Thus, $A \sqcap \Delta \in \text{HOD}$. Note that if $b, b' \in A$ are distinct, then $b \cap \Delta \neq b' \cap \Delta$.

Define, for distinct $b_0, b_1 \in A$, $d(b_0, b_1)$ to be the least (in the canonical well-ordering of HOD) element of $b_0 \triangle b_1$. Let

$$\Delta = \{d(b_0, b_1) \mid b_0, b_1 \in A, b_0 \neq b_1\}.$$

Then $\Delta \in \text{HOD}$, and $\overline{\overline{\Delta}} < \kappa$. Since κ is a cardinal in V, $\overline{\overline{\Delta}}^{\text{HOD}} < \kappa$ as well, so that $\Delta \in ([T]^{<\kappa})^{\text{HOD}}$. Thus, $A \sqcap \Delta \in \text{HOD}$. Note that if $b, b' \in A$ are distinct, then $b \cap \Delta \neq b' \cap \Delta$.

As a consequence, for $\Delta \subseteq c \in ([T]^{<\kappa})^{HOD}$ and $\bar{b} \in A \sqcap \Delta$, there is a unique $\bar{b}' \in A \sqcap c$ such that $\bar{b}' \cap \Delta = \bar{b}$.

Define, for distinct $b_0, b_1 \in A$, $d(b_0, b_1)$ to be the least (in the canonical well-ordering of HOD) element of $b_0 \triangle b_1$. Let

$$\Delta = \{d(b_0, b_1) \mid b_0, b_1 \in A, b_0 \neq b_1\}.$$

Then $\Delta \in \text{HOD}$, and $\overline{\overline{\Delta}} < \kappa$. Since κ is a cardinal in V, $\overline{\overline{\Delta}}^{\text{HOD}} < \kappa$ as well, so that $\Delta \in ([T]^{<\kappa})^{\text{HOD}}$. Thus, $A \cap \Delta \in \text{HOD}$. Note that if $b, b' \in A$ are distinct, then $b \cap \Delta \neq b' \cap \Delta$.

As a consequence, for $\Delta \subseteq c \in ([T]^{<\kappa})^{HOD}$ and $\bar{b} \in A \sqcap \Delta$, there is a unique $\bar{b}' \in A \sqcap c$ such that $\bar{b}' \cap \Delta = \bar{b}$. So we can define in HOD:

$$B(\bar{b}) = \bigcup \{\bar{b}' \mid \exists c \in ([T]^{<\kappa})^{\mathsf{HOD}} \quad (\Delta \subseteq c \text{ and } \bar{b}' \in \mathsf{A} \sqcap c \text{ and } \bar{b}' \cap \Delta = \bar{b})\}.$$

Define, for distinct $b_0, b_1 \in A$, $d(b_0, b_1)$ to be the least (in the canonical well-ordering of HOD) element of $b_0 \triangle b_1$. Let

$$\Delta = \{d(b_0, b_1) \mid b_0, b_1 \in A, b_0 \neq b_1\}.$$

Then $\Delta \in \text{HOD}$, and $\overline{\overline{\Delta}} < \kappa$. Since κ is a cardinal in V, $\overline{\overline{\Delta}}^{\text{HOD}} < \kappa$ as well, so that $\Delta \in ([T]^{<\kappa})^{\text{HOD}}$. Thus, $A \sqcap \Delta \in \text{HOD}$. Note that if $b, b' \in A$ are distinct, then $b \cap \Delta \neq b' \cap \Delta$.

As a consequence, for $\Delta \subseteq c \in ([T]^{<\kappa})^{HOD}$ and $\bar{b} \in A \sqcap \Delta$, there is a unique $\bar{b}' \in A \sqcap c$ such that $\bar{b}' \cap \Delta = \bar{b}$. So we can define in HOD:

$$B(\bar{b}) = \bigcup \{\bar{b}' \mid \exists c \in ([T]^{<\kappa})^{\mathsf{HOD}} \quad (\Delta \subseteq c \text{ and } \bar{b}' \in \mathsf{A} \sqcap c \text{ and } \bar{b}' \cap \Delta = \bar{b})\}.$$

It follows that $B(\bar{b})$ is the unique $b \in A$ such that $b \cap \Delta = \bar{b}$. Since for $b \in A$, $b = B(b \cap \Delta)$, it follows that

$$A = \{B(\bar{b}) \mid \bar{b} \in A \sqcap \Delta\}$$

and hence, $A \in HOD$. In particular, $a \in HOD$.

Consequences

Note that the fact that HOD satisfies the ω -approximation property in $<\omega$ -HOD immediately implies the Hamkins-Leahy result that HOD = $<\omega$ -HOD.

Consequences

Note that the fact that HOD satisfies the ω -approximation property in $<\omega$ -HOD immediately implies the Hamkins-Leahy result that HOD = $<\omega$ -HOD.

Proposition

Let κ be an infinite cardinal. If θ is a limit ordinal with $\mathrm{cf}^{<\kappa\text{-HOD}}(\theta) \geq \kappa$, then $<\kappa\text{-HOD}$ has no length θ sequence that's fresh over HOD.

Bukovský's condition

Definition (Bukovský)

Let $M_1 \subseteq M_2$ be transitive models, and let κ be a cardinal in M_2 . Then $\operatorname{\mathsf{Apr}}_{M_1,M_2}(\kappa)$ says that whenever $f \in M_2$ is a function from an ordinal α to an ordinal β , then there is a function $g:\alpha \longrightarrow \mathcal{P}(\beta)$ in M_1 such that for every $\xi < \alpha$, $f(\xi) \in g(\xi)$ and $\overline{\overline{g(\xi)}}^{M_1} < \kappa$.

Bukovský's condition

Definition (Bukovský)

Let $M_1 \subseteq M_2$ be transitive models, and let κ be a cardinal in M_2 . Then $\operatorname{\mathsf{Apr}}_{M_1,M_2}(\kappa)$ says that whenever $f \in M_2$ is a function from an ordinal α to an ordinal β , then there is a function $g: \alpha \longrightarrow \mathcal{P}(\beta)$ in M_1 such that for every $\xi < \alpha$, $f(\xi) \in g(\xi)$ and $\overline{\overline{g(\xi)}}^{M_1} < \kappa$.

The remarkable main theorem of Bukovský on this condition is the following.

Bukovský's condition

Definition (Bukovský)

Let $M_1 \subseteq M_2$ be transitive models, and let κ be a cardinal in M_2 . Then $\operatorname{\mathsf{Apr}}_{M_1,M_2}(\kappa)$ says that whenever $f \in M_2$ is a function from an ordinal α to an ordinal β , then there is a function $g: \alpha \longrightarrow \mathcal{P}(\beta)$ in M_1 such that for every $\xi < \alpha$, $f(\xi) \in g(\xi)$ and $\overline{g(\xi)}^{M_1} < \kappa$.

The remarkable main theorem of Bukovský on this condition is the following.

Theorem (ZFC, Bukovský 1973)

Suppose M is a transitive inner model of ZFC, and κ is an infinite cardinal. Then the following conditions are equivalent:

- 1. V is a forcing extension of M by a κ -c.c. forcing notion.
- 2. $Apr_{M,V}(\kappa)$ holds.

Let κ be a cardinal. Then $\mathrm{Apr}_{\mathrm{HOD},<\kappa\text{-HOD}}(\kappa)$ holds.

Let κ be a cardinal. Then $\operatorname{Apr}_{\operatorname{HOD},<\kappa\operatorname{-HOD}}(\kappa)$ holds.

Proof.

I will prove more: if $f: d \longrightarrow \mathsf{HOD}$ is a function in $<\kappa\text{-HOD}$ with $d \in \mathsf{HOD}$, then there is in HOD a function $g: d \longrightarrow \mathsf{HOD}$ such that for every $x \in d$, $f(x) \in g(x)$ and $\overline{g(x)}^{\mathsf{HOD}} < \kappa$.

Let κ be a cardinal. Then $\operatorname{Apr}_{HOD, <\kappa\text{-HOD}}(\kappa)$ holds.

Proof.

I will prove more: if $f: d \longrightarrow \mathsf{HOD}$ is a function in $<\kappa\text{-HOD}$ with $d \in \mathsf{HOD}$, then there is in HOD a function $g: d \longrightarrow \mathsf{HOD}$ such that for every $x \in d$, $f(x) \in g(x)$ and $\overline{g(x)}^{\mathsf{HOD}} < \kappa$.

To see this, let f be as described. Let F be OD with $f \in F$ and $\overline{F}^V < \kappa$, and such that for every $g \in F$, $g: d \longrightarrow \mathsf{HOD}$.

Let κ be a cardinal. Then $\operatorname{Apr}_{HOD,<\kappa\text{-HOD}}(\kappa)$ holds.

Proof.

I will prove more: if $f: d \longrightarrow \mathsf{HOD}$ is a function in $<\kappa\text{-HOD}$ with $d \in \mathsf{HOD}$, then there is in HOD a function $g: d \longrightarrow \mathsf{HOD}$ such that for every $x \in d$, $f(x) \in g(x)$ and $g(x) \in \kappa$.

To see this, let f be as described. Let F be OD with $f \in F$ and $\overline{F}^{V} < \kappa$, and such that for every $g \in F$, $g: d \longrightarrow HOD$. Define a function g with domain d by

$$g(x) = \{h(x) \mid h \in F\}.$$

Let κ be a cardinal. Then $\operatorname{Apr}_{HOD,<\kappa\text{-HOD}}(\kappa)$ holds.

Proof.

I will prove more: if $f: d \longrightarrow \mathsf{HOD}$ is a function in $<\kappa\text{-HOD}$ with $d \in \mathsf{HOD}$, then there is in HOD a function $g: d \longrightarrow \mathsf{HOD}$ such that for every $x \in d$, $f(x) \in g(x)$ and $\overline{\overline{g(x)}}^{\mathsf{HOD}} < \kappa$.

To see this, let f be as described. Let F be OD with $f \in F$ and $\overline{F}^V < \kappa$, and such that for every $g \in F$, $g: d \longrightarrow \mathsf{HOD}$. Define a function g with domain d by

$$g(x) = \{h(x) \mid h \in F\}.$$

Then $g \in HOD$, and for $x \in d$, $f(x) \in g(x)$ and $\overline{g(x)}^{HOD} < \kappa$. So g is as wished.

Theorem

Let κ be an infinite cardinal. Then the following are equivalent:

1. $<\kappa$ -HOD satisfies the axiom of choice.

Theorem

Let κ be an infinite cardinal. Then the following are equivalent:

- 1. $<\kappa$ -HOD satisfies the axiom of choice.
- 2. $<\kappa$ -HOD is a set forcing extension of HOD by a κ -c.c. forcing notion.

Theorem

Let κ be an infinite cardinal. Then the following are equivalent:

- 1. $<\kappa$ -HOD satisfies the axiom of choice.
- 2. $<\kappa$ -HOD is a set forcing extension of HOD by a κ -c.c. forcing notion.

Proposition

Let κ be an infinite cardinal. Then HOD and $<\kappa$ -HOD have the same cardinals and cofinalities above κ , in the following sense:

1. If λ is a limit ordinal such that $\operatorname{cf}^{HOD}(\lambda) \geq \kappa$, then $\operatorname{cf}^{HOD}(\lambda) = \operatorname{cf}^{<\kappa\text{-HOD}}(\lambda)$.

Theorem

Let κ be an infinite cardinal. Then the following are equivalent:

- 1. $<\kappa$ -HOD satisfies the axiom of choice.
- 2. $<\kappa$ -HOD is a set forcing extension of HOD by a κ -c.c. forcing notion.

Proposition

Let κ be an infinite cardinal. Then HOD and $<\kappa$ -HOD have the same cardinals and cofinalities above κ , in the following sense:

- 1. If λ is a limit ordinal such that $\operatorname{cf}^{HOD}(\lambda) \geq \kappa$, then $\operatorname{cf}^{HOD}(\lambda) = \operatorname{cf}^{<\kappa\text{-HOD}}(\lambda)$.
- 2. For $\lambda \geq \kappa$, λ is regular in HOD iff λ is regular in $<\kappa$ -HOD.

Theorem

Let κ be an infinite cardinal. Then the following are equivalent:

- 1. $<\kappa$ -HOD satisfies the axiom of choice.
- 2. $<\kappa$ -HOD is a set forcing extension of HOD by a κ -c.c. forcing notion.

Proposition

Let κ be an infinite cardinal. Then HOD and $<\kappa$ -HOD have the same cardinals and cofinalities above κ , in the following sense:

- 1. If λ is a limit ordinal such that $\operatorname{cf}^{HOD}(\lambda) \geq \kappa$, then $\operatorname{cf}^{HOD}(\lambda) = \operatorname{cf}^{<\kappa\text{-HOD}}(\lambda)$.
- 2. For $\lambda \geq \kappa$, λ is regular in HOD iff λ is regular in $<\kappa$ -HOD.
- 3. $\operatorname{Card}^{\mathsf{HOD}} \setminus \kappa = \operatorname{Card}^{<\kappa \mathsf{HOD}} \setminus \kappa$.

Hamkins-Laver without choice

Theorem

Let W be a transitive model satisfying ZF. Let κ be a regular cardinal in W. Let $\mathcal{M}, \mathcal{M}' \in W$ be transitive models of ZF without replacement, with $\theta = \mathcal{M} \cap \operatorname{On} = \mathcal{M}' \cap \operatorname{On}$, and each satisfying: if $\overline{\kappa} \leq \kappa$ and $r \subseteq \overline{\kappa} \times \overline{\kappa}$ is such that $\langle \overline{\kappa}, r \rangle$ a well-order, then there are an ordinal α and a function $\pi : \overline{\kappa} \longrightarrow \alpha$ such that $\pi : \langle \overline{\kappa}, r \rangle \longrightarrow \langle \alpha, < \rangle$ is an isomorphism, and every set of ordinals has a monotone enumeration. Moreover, suppose both \mathcal{M} and \mathcal{M}' satisfy following condition, a form of the axiom of choice: if $\mathcal{X} = \mathcal{M}$ or \mathcal{M}' and $a \in \mathcal{X}$, then there is an $r \subseteq a \times a$ in \mathcal{X} such that in W (equivalently, in V), $\langle a, r \rangle$ is a well-order.

Let $W_{\theta} = (V_{\theta})^{W}$, and suppose that both \mathcal{M} and \mathcal{M}' satisfy the κ -cover and approximation properties in W_{θ} . Suppose, moreover, that $\mathcal{P}(\kappa) \cap \mathcal{M} = \mathcal{P}(\kappa) \cap \mathcal{M}'$, and that $(\kappa^{+})^{\mathcal{M}} = (\kappa^{+})^{\mathcal{M}'} = (\kappa^{+})^{W}$.

Then it follows that $\mathcal{P}(\theta) \cap \mathcal{M} = \mathcal{P}(\theta) \cap \mathcal{M}'$.

More consequences

Theorem

Let $\lambda \geq 2$ be a cardinal. Let $\kappa \geq \lambda$ be regular. Then HOD is definable in $<\lambda$ -HOD using $\mathcal{P}(\kappa) \cap$ HOD as a parameter.

More consequences

Theorem

Let $\lambda \geq 2$ be a cardinal. Let $\kappa \geq \lambda$ be regular. Then HOD is definable in $<\lambda$ -HOD using $\mathcal{P}(\kappa) \cap$ HOD as a parameter.

Proposition

Let κ be an infinite cardinal, and let $\lambda \geq \kappa$ be inaccessible in HOD.

- 1. If λ weakly compact in $<\kappa$ -HOD, then it is weakly compact in HOD.
- 2. If λ is measurable in $<\kappa$ -HOD, then it is measurable in HOD.

Capturing large cardinals

This shows that $<\kappa$ -HOD does not capture that much more of the large cardinal structure of V than HOD does. On the one hand, if κ is inaccessible, then $V_{\kappa} \cap <\kappa$ -HOD $= V_{\kappa}$, so that large cardinal properties of V witnessed by V_{κ} are inherited by $<\kappa$ -HOD. But it was shown by Cheng, Friedman and Hamkins that it is consistent that a supercompact cardinal λ is not weakly compact in HOD- so if $\kappa \leq \lambda$, then λ is not weakly compact in $<\kappa$ -HOD either.

Leaps

Definition

A cardinal $\lambda > 2$ is a leap if

$$<\!\!\delta\text{-HOD} \subsetneqq <\!\!\lambda\text{-HOD},$$

for every cardinal $\delta < \lambda$. I write $\langle \Lambda_{\alpha} \mid \alpha < \Theta \rangle$ for the monotone enumeration of the leaps.

Leaps

Definition

A cardinal $\lambda > 2$ is a leap if

$$<\!\delta ext{-HOD}\subsetneqq<\!\lambda ext{-HOD},$$

for every cardinal $\delta < \lambda$. I write $\langle \Lambda_{\alpha} \mid \alpha < \Theta \rangle$ for the monotone enumeration of the leaps.

Lemma

Leaps have the following properties.

- 1. The class of leaps is closed in the ordinals.
- 2. Λ_0 , if defined, is an uncountable successor cardinal.
- 3. Successor leaps are successor cardinals.

Big leaps

Definition

Say that a leap γ is a big leap if

$$\left(\bigcup_{\delta<\gamma,\delta\in\mathrm{Card}}<\!\delta\text{-HOD}\right)\subsetneqq<\!\gamma\text{-HOD}.$$

Big leaps

Definition

Say that a leap γ is a big leap if

$$\left(\bigcup_{\delta<\gamma,\delta\in\mathrm{Card}}<\!\!\delta\text{-HOD}\right)\subsetneqq<\!\!\gamma\text{-HOD}.$$

Theorem

Every leap is big.

Big leaps

Definition

Say that a leap γ is a big leap if

$$\left(\bigcup_{\delta<\gamma,\delta\in\mathrm{Card}}<\!\delta\text{-HOD}\right)\subsetneqq<\!\gamma\text{-HOD}.$$

Theorem

Every leap is big.

More info on limit leaps:

Theorem

If λ is a limit leap, then $<\lambda$ -HOD does not satisfy the axiom of choice.

Let

$$T = \{ \kappa < \lambda \mid \kappa \text{ is a successor leap} \}.$$

For a successor leap κ , let κ_- be its predecessor leap. For $\kappa \in T$, let $\tau_\kappa = \langle \lceil \varphi_\kappa \rceil, \alpha_\kappa, \beta_\kappa \rangle$ be the least code for an \in -minimal element of $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD.

Let

$$T = \{ \kappa < \lambda \mid \kappa \text{ is a successor leap} \}.$$

For a successor leap κ , let κ_- be its predecessor leap. For $\kappa \in T$, let $\tau_\kappa = \langle \lceil \varphi_\kappa \rceil, \alpha_\kappa, \beta_\kappa \rangle$ be the least code for an \in -minimal element of $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD. That is, letting $A_\kappa = \{x \mid \text{Sat}(V_{\alpha_\kappa}, \lceil \varphi_\kappa \rceil, \beta_\kappa)\}$, A_κ has cardinality less than κ , there is an $a \in A_\kappa$ such that a is \in -minimal in $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD, and τ_κ is minimal with these properties.

Let

$$T = \{ \kappa < \lambda \mid \kappa \text{ is a successor leap} \}.$$

For a successor leap κ , let κ_- be its predecessor leap. For $\kappa \in T$, let $\tau_\kappa = \langle \lceil \varphi_\kappa \rceil, \alpha_\kappa, \beta_\kappa \rangle$ be the least code for an \in -minimal element of $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD. That is, letting $A_\kappa = \{x \mid \text{Sat}(V_{\alpha_\kappa}, \lceil \varphi_\kappa \rceil, \beta_\kappa)\}$, A_κ has cardinality less than κ , there is an $a \in A_\kappa$ such that a is \in -minimal in $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD, and τ_κ is minimal with these properties. Let

$$B_{\kappa} = \{ x \in A_{\kappa} \mid x \text{ is } \in \text{-minimal in } < \kappa \text{-HOD} \setminus < \kappa_{-} \text{-HOD} \}.$$

Let

$$T = \{ \kappa < \lambda \mid \kappa \text{ is a successor leap} \}.$$

For a successor leap κ , let κ_- be its predecessor leap. For $\kappa \in T$, let $\tau_\kappa = \langle \lceil \varphi_\kappa \rceil, \alpha_\kappa, \beta_\kappa \rangle$ be the least code for an \in -minimal element of $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD. That is, letting $A_\kappa = \{x \mid \text{Sat}(V_{\alpha_\kappa}, \lceil \varphi_\kappa \rceil, \beta_\kappa)\}$, A_κ has cardinality less than κ , there is an $a \in A_\kappa$ such that a is \in -minimal in $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD, and τ_κ is minimal with these properties. Let

$$B_{\kappa} = \{ x \in A_{\kappa} \mid x \text{ is } \in \text{-minimal in } < \kappa \text{-HOD} \setminus < \kappa_{-} \text{-HOD} \}.$$

So for every $b \in B_{\kappa}$, $b \in <\kappa$ -HOD, $b \notin <\kappa_-$ -HOD, but $b \subseteq <\kappa_-$ -HOD.

Let

$$T = \{ \kappa < \lambda \mid \kappa \text{ is a successor leap} \}.$$

For a successor leap κ , let κ_- be its predecessor leap. For $\kappa \in T$, let $\tau_\kappa = \langle \lceil \varphi_\kappa \rceil, \alpha_\kappa, \beta_\kappa \rangle$ be the least code for an \in -minimal element of $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD. That is, letting $A_\kappa = \{x \mid \text{Sat}(V_{\alpha_\kappa}, \lceil \varphi_\kappa \rceil, \beta_\kappa)\}$, A_κ has cardinality less than κ , there is an $a \in A_\kappa$ such that a is \in -minimal in $<\kappa$ -HOD $\setminus <\kappa_-$ -HOD, and τ_κ is minimal with these properties. Let

$$B_{\kappa} = \{ x \in A_{\kappa} \mid x \text{ is } \in \text{-minimal in } < \kappa \text{-HOD} \setminus < \kappa_{-} \text{-HOD} \}.$$

So for every $b \in B_{\kappa}$, $b \in <\kappa$ -HOD, $b \notin <\kappa_-$ -HOD, but $b \subseteq <\kappa_-$ -HOD. $\vec{B} = \langle B_{\kappa} \mid \kappa \in T \rangle$ is OD, and \vec{B} belongs to $<\lambda$ -HOD, but it is not in $<\bar{\kappa}$ -HOD for any cardinal $\bar{\lambda} < \lambda$ (showing that λ is a big leap).

Proof (cont'd).

 \vec{B} is a sequence of nonempty sets, and I claim that it has no choice function in $<\lambda$ -HOD: suppose it did. Let $\vec{b}=\langle b_\kappa \mid \kappa \in T \rangle \in <\lambda$ -HOD be such that for every $\kappa \in T$, $b_\kappa \in B_\kappa$. Since $\vec{b} \in <\lambda$ -HOD, it is $<\gamma$ -OD, for some cardinal $\gamma < \lambda$. Let X witness this, that is let X be OD and of cardinality less than γ , so that $\vec{b} \in X$. Let

$$Y = X \cap \prod_{\kappa \in T} B_{\kappa}.$$

Clearly, Y is still OD, has cardinality less than γ , and has $\vec{b} \in Y$.

Proof (cont'd).

 \vec{B} is a sequence of nonempty sets, and I claim that it has no choice function in $<\lambda$ -HOD: suppose it did. Let $\vec{b}=\langle b_\kappa \mid \kappa \in T \rangle \in <\lambda$ -HOD be such that for every $\kappa \in T$, $b_\kappa \in B_\kappa$. Since $\vec{b} \in <\lambda$ -HOD, it is $<\gamma$ -OD, for some cardinal $\gamma < \lambda$. Let X witness this, that is let X be OD and of cardinality less than γ , so that $\vec{b} \in X$. Let

$$Y = X \cap \prod_{\kappa \in T} B_{\kappa}.$$

Clearly, Y is still OD, has cardinality less than γ , and has $\vec{b} \in Y$.

Now pick $\kappa \in T$ such that $\gamma \leq \kappa_-$. I claim that $b_\kappa \in <\kappa_-$ -HOD, a contradiction. Namely, let

$$Z = \{ X(\kappa) \mid X \in Y \}.$$

This is an OD set of cardinality at most $\overline{\overline{Y}} < \gamma \le \kappa_-$, and b_{κ} belongs to it. So b_{κ} is $<\kappa_-$ -OD. And since $b_{\kappa} \in B_{\kappa}$, we know that $b_{\kappa} \subseteq <\kappa_-$ -HOD. Thus, $b_{\kappa} \in <\kappa_-$ -HOD, as claimed.

Consistency results

Preserving membership to blurry HOD

Proposition (ZFC)

Suppose that $\mathbb P$ is a notion of forcing, G is generic for $\mathbb P$ over V, κ is a cardinal in V[G], and V is definable in V[G] from a parameter in $<\kappa$ - $\mathsf{OD}^{V[G]}$. Then

$$<\kappa$$
-OD $^{\mathrm{V}} \subseteq <\kappa$ -OD $^{\mathrm{V[G]}}$

and so, $<\kappa\text{-HOD}^{V}\subseteq<\kappa\text{-HOD}^{V[G]}$ as well.

Preserving membership to blurry HOD

Proposition (ZFC)

Suppose that $\mathbb P$ is a notion of forcing, G is generic for $\mathbb P$ over V, κ is a cardinal in V[G], and V is definable in V[G] from a parameter in $<\kappa$ - $\mathsf{OD}^{V[G]}$. Then

$$<\!\kappa$$
-OD $^{
m V}\subseteq<\!\kappa$ -OD $^{
m V[G]}$

and so, $<\kappa\text{-HOD}^{V}\subseteq<\kappa\text{-HOD}^{V[G]}$ as well.

Corollary

Let κ be a cardinal, and let $\mathbb P$ be a notion of forcing of cardinality γ , where $2^{(2^{\gamma})} < \kappa$. If G is $\mathbb P$ -generic over V, then

$$<\kappa\text{-HOD}^{V} \subset <\kappa\text{-HOD}^{V[G]}.$$

Homogeneity

Definition (à la Dobrinen-Friedman)

Let $\mathbb P$ be a forcing notion. For $p\in\mathbb P$, let the cone below p in $\mathbb P$ be the set

$$\mathbb{P}_{< p} = \{ q \in \mathbb{P} \mid q \le p \}$$

equipped with the restriction of the ordering of \mathbb{P} .

 \mathbb{P} is called cone homogeneous if for any two conditions $p, q \in \mathbb{P}$, there are $p' \leq p$ and $q' \leq q$ such that $\mathbb{P}_{\leq p'}$ and $\mathbb{P}_{\leq q'}$ are isomorphic.

Lemma

Let κ be a regular cardinal, $\mathbb P$ a cone homogeneous, $<\kappa$ -closed forcing notion, and let $G\subseteq \mathbb P$ be $\mathbb P$ -generic over V. Then

$$<\!\!\kappa\text{-HOD}^{V[G]}\subseteq V.$$

Lemma

Let κ be a regular cardinal, $\mathbb P$ a cone homogeneous, $<\kappa$ -closed forcing notion, and let $G\subseteq \mathbb P$ be $\mathbb P$ -generic over V. Then

$$<\kappa$$
-HOD $^{V[G]}\subseteq V$.

Note how nicely this lemma generalizes the folklore fact that if $\mathbb P$ is cone homogeneous and $G\subseteq \mathbb P$ is generic, then $\mathsf{HOD}^{\mathsf{V}[G]}\subseteq \mathsf{V}$ - this is the special case $\kappa=\omega$.

Not adding to blurry HOD

Lemma

Let κ be a regular cardinal, $\mathbb P$ a cone homogeneous, $<\kappa$ -closed forcing notion, $\bar\kappa \le \kappa$ a cardinal such that $\mathbb P$ is $<\bar\kappa$ -OD, and let $G\subseteq \mathbb P$ be $\mathbb P$ -generic over V. Then

$$<\bar{\kappa}$$
-HOD $^{V[G]}\subseteq<\bar{\kappa}$ -HOD $^{V}.$

Not adding to blurry HOD

Lemma

Let κ be a regular cardinal, $\mathbb P$ a cone homogeneous, $<\kappa$ -closed forcing notion, $\bar\kappa \le \kappa$ a cardinal such that $\mathbb P$ is $<\bar\kappa$ -OD, and let $G\subseteq \mathbb P$ be $\mathbb P$ -generic over V. Then

$$<\bar{\kappa}$$
-HOD $^{V[G]} \subseteq <\bar{\kappa}$ -HOD $^{V}.$

Again, note how nicely this generalizes the fact that if \mathbb{P} is and OD forcing notion and $G \subseteq \mathbb{P}$ is generic, then $HOD^{V[G]} \subseteq HOD^{V}$.

Cohen forcing

Theorem (ZFC)

Let κ be an infinite regular cardinal such that $\kappa^{<\kappa}=\kappa$, and let G be generic for $\mathbb{P}=\mathrm{Add}(\kappa,1)$. If $\bar{\kappa}$ is a cardinal less than or equal to 2^{κ} in V[G], then

$$<\!ar{\kappa} ext{-HOD}^{\mathrm{V}[\mathsf{G}]}\subseteq<\!ar{\kappa} ext{-HOD}^{\mathrm{V}}.$$

Corollary

Assume V=L, and let κ be an infinite regular cardinal. If G is generic for $\mathbb{P}=\mathrm{Add}(\kappa,1)$, then

$$L = \mathsf{HOD}^{\mathsf{L}[G]} = <\kappa^+ - \mathsf{HOD}^{\mathsf{L}[G]} \subsetneq <\kappa^{++} - \mathsf{HOD}^{\mathsf{L}[G]} = \mathsf{L}[G].$$

In particular, $\Lambda_0^{L[G]} = \kappa^{++}$.

Iterated Cohen forcing

Theorem

Assume V = L. Let λ be a cardinal, and let $\langle \langle \mathbb{P}_i \mid i \leq \lambda \rangle$, $\langle \dot{\mathbb{Q}}_i \mid i < \lambda \rangle \rangle$ be the reverse Easton iteration whose only nontrivial stages are when $i = \kappa$ is an infinite regular cardinal, $\Vdash_{\mathbb{P}_{\kappa}} \dot{\mathbb{Q}}_{\kappa} = \operatorname{Add}(\kappa, 1)$. Let G be $\mathbb{P} = \mathbb{P}_{\lambda}$ -generic over L. Then:

- 1. for regular $\kappa < \lambda$, $L[G \upharpoonright (\kappa + 1)] = <\kappa^{++} \mathsf{HOD}^{L[G]}$, and $G(\kappa) \in <\kappa^{++} \mathsf{HOD}^{L[G]} \setminus <\kappa^{+} \mathsf{HOD}^{L[G]}$.
- 2. $L = \langle \omega_1 \text{-HOD}^{L[G]}$, so ω_1 is not a leap in L[G].
- 3. for any limit cardinal $\kappa \leq \lambda$, $G \upharpoonright \kappa \in \langle \kappa^{++} \text{-HOD}^{L[G]} \setminus \langle \kappa^{+} \text{-HOD}^{L[G]}$. So κ^{++} is a leap in L[G].

The forcing of Kanovei-Lyubetsky

Kanovei and Lyubetsky formed the finite support product $\mathbb{T}^{<\omega}$ of a forcing in L, due to Jensen, whose conditions are a certain collection of perfect trees, ordered by inclusion. This product is a ccc forcing in L, and forcing with $\mathbb{T}^{<\omega}$ over L adds a sequence $\vec{x} = \langle x_i \mid i < \omega \rangle$ of reals such that in $L[\vec{x}]$, $\{x_i \mid i < \omega\}$ is the set of \mathbb{T} -generic reals over L.

Proposition

Let \vec{x} be a $\mathbb{T}^{<\omega}$ -generic sequence over L. Then

- 1. $\{x_i \mid i < \omega\}$ is $OD^{L[\vec{X}]}$,
- 2. $\{x_i \mid i < \omega\} \subseteq <\omega_1\text{-HOD}^{L[\vec{x}]},$
- 3. $\{x_i \mid i < \omega\} \in \langle \omega_1 \text{-HOD}^{L[\vec{X}]},$
- 4. $\vec{x} \notin \langle \omega_1 \text{-HOD}^{L[\vec{x}]},$
- 5. in $L[\vec{x}]$, $L = \text{HOD} = <\omega\text{-HOD} \subsetneq <\omega_1\text{-HOD} \subsetneq <\omega_2\text{-HOD} = V$. In particular, $\Lambda_0^{L[\vec{x}]} = \omega_1$.

Iterating

Corollary

Assume V = L. Let \vec{x} be a $\mathbb{T}^{<\omega}$ -generic sequence over L. Working in $L[\vec{x}]$, let λ be a cardinal, and let $\langle\langle\mathbb{P}_i\mid i\leq\lambda\rangle$, $\langle\dot{\mathbb{Q}}_i\mid i<\lambda\rangle\rangle$ be the reverse Easton iteration whose only nontrivial stages are when $i=\kappa$ is an uncountable regular cardinal, in which case $\Vdash_{\mathbb{P}_\kappa}\dot{\mathbb{Q}}_\kappa=\mathrm{Add}(\kappa,1)$. Let G be $\mathbb{P}=\mathbb{P}_\lambda$ -generic over $L[\vec{x}]$. Then:

- 1. for uncountable regular $\kappa < \lambda$, $L[\vec{x}][G \upharpoonright (\kappa + 1)] = <\kappa^{++} \mathsf{HOD}^{L[\vec{x}][G]}$, and $G(\kappa) \in <\kappa^{++} \mathsf{HOD}^{L[\vec{x}][G]} \setminus <\kappa^{+} \mathsf{HOD}^{L[\vec{x}][G]}$.
- 2. $L[\vec{x}] = \langle \omega_2 \text{-HOD}^{L[\vec{x}][G]} \rangle$
- 3. for any limit cardinal $\kappa \leq \lambda$, $G \upharpoonright \kappa \in \langle \kappa^{++} \text{-HOD}^{\lfloor [\vec{\chi}][G]} \setminus \langle \kappa^{+} \text{-HOD}^{\lfloor [\vec{\chi}][G]} \rangle$.
- 4. $\{x_i \mid i < \omega\} \in \langle \omega_1 \text{-HOD}^{\lfloor \vec{x} \rceil [G]}, \text{ but } \vec{x} \notin \langle \omega_1 \text{-HOD}^{\lfloor \vec{x} \rceil [G]}.$
- 5. $<\omega$ -HOD^{L[\vec{X}][G]} = L.

Remark

Thus, in $L[\vec{x}][G]$, if $\omega_1 \leq \kappa \leq \lambda$, and either κ is regular and $\kappa < \lambda$, or κ is a limit cardinal, then κ^{++} is a leap. All limit cardinals up to λ are also leaps, and so are ω_1 and ω_2 .

For example, if $\lambda = \aleph_{\omega}$, then in $L[\vec{x}][G]$, all uncountable cardinals up to and including \aleph_{ω} are leaps, as is $\aleph_{\omega+2}$.

Remark

Thus, in $L[\vec{x}][G]$, if $\omega_1 \leq \kappa \leq \lambda$, and either κ is regular and $\kappa < \lambda$, or κ is a limit cardinal, then κ^{++} is a leap. All limit cardinals up to λ are also leaps, and so are ω_1 and ω_2 .

For example, if $\lambda = \aleph_{\omega}$, then in $L[\vec{x}][G]$, all uncountable cardinals up to and including \aleph_{ω} are leaps, as is $\aleph_{\omega+2}$.

The natural question is how to arrange the successor cardinal of a limit leap to be a leap, or even how to arrange that the least leap is the successor of a limit cardinal (it can't be a limit cardinal).

Homogeneous Souslin trees

Definition (á la Brodksy-Rinot)

Let κ be a regular cardinal. A streamlined (or sequential) κ -tree is a set T of functions p such that the domain of p is an ordinal less than κ and the range of p is contained in κ , closed under restrictions to ordinals, ordered by inclusion, such that for every $\alpha < \kappa$, the α -the level of T, $T(\alpha) = \{p \in T \mid \operatorname{dom}(p) = \alpha\}$ has cardinality less than κ and is nonempty. If $p, q \in T$, then $p \perp q$ (p, q are incompatible) iff neither $p \subseteq q$ nor $q \subseteq p$. An antichain in T is a set $A \subseteq T$ of pairwise incompatible elements. T is a κ -Souslin tree if it has no antichain of cardinality κ . It is coherent if whenever $p, q \in T$, then the set $d(p, q) = \{i \in \operatorname{dom}(p) \cap \operatorname{dom}(q) \mid p(i) \neq q(i)\}$ is finite. It is uniformly homogeneous if whenever $p, q \in T$ and $\operatorname{dom}(p) \leq \operatorname{dom}(q)$, then the function $p * q = p \cup (q \upharpoonright (\operatorname{dom}(q) \setminus \operatorname{dom}(p))) \in T$. It is uniformly coherent if it is coherent and uniformly homogeneous.

Creating a leap at κ^+ with a κ -Souslin tree

Theorem

Let κ be a regular uncountable cardinal, and let T be a streamlined, uniformly coherent κ -Souslin tree. Let $G \subseteq T$ be T-generic over V. Then:

- 1. $<\kappa$ -HOD $^{V[G]}\subseteq V$.
- 2. If T is $<\kappa^+$ -HOD^{V[G]}, then $G \in <\kappa^+$ -HOD^{V[G]}.
- 3. If $\bar{\kappa} \leq \kappa$ is a cardinal and T is $<\bar{\kappa}$ -OD, then $<\bar{\kappa}$ -HOD $^{V[G]} \subseteq <\bar{\kappa}$ -HOD V .

It follows from recent work of Brodsky and Rinot that in L, for every regular cardinal κ that is not weakly compact, there is a streamlined, uniformly coherent κ -Souslin tree in L.

It follows from recent work of Brodsky and Rinot that in L, for every regular cardinal κ that is not weakly compact, there is a streamlined, uniformly coherent κ -Souslin tree in L.

Hence:

Corollary

Assume V=L, and let λ be an uncountable regular cardinal that is not weakly compact. Then there is a λ -c.c. forcing extension L[G] of L such that $\Lambda_0^{L[G]}=\lambda^+$.

It follows from recent work of Brodsky and Rinot that in L, for every regular cardinal κ that is not weakly compact, there is a streamlined, uniformly coherent κ -Souslin tree in L.

Hence:

Corollary

Assume V=L, and let λ be an uncountable regular cardinal that is not weakly compact. Then there is a λ -c.c. forcing extension L[G] of L such that $\Lambda_0^{L[G]}=\lambda^+$.

Corollary

If ZFC is consistent with the existence of an inaccessible cardinal, then it is consistent that Λ_0 is the successor of an inaccessible cardinal.

Iterating

Theorem

If ZFC is consistent with the existence of an inaccessible cardinal, then ZFC is consistent with the existence of a regular (in fact inaccessible) limit leap whose successor cardinal is also a leap.

Příkrý forcing

Theorem

Let κ be a measurable cardinal, let U be a normal ultrafilter on κ , let \mathbb{P} be the Příkrý forcing for U, and let G be \mathbb{P} -generic over V. Then

- 1. $<\kappa$ -HOD $^{V[G]}\subseteq V$.
- 2. If U is $<\kappa^+$ -OD^{V[G]}, then, letting C be the Příkrý sequence corresponding to G, $C \in <\kappa^+$ -HOD^{V[G]}.
- 3. If $\bar{\kappa} \leq \kappa$ is a cardinal and U is $<\bar{\kappa}$ -OD, then $<\bar{\kappa}$ -HOD $^{V[G]} \subseteq <\bar{\kappa}$ -HOD V .

Theorem

Assume V = L[U], where U is a normal ultrafilter on κ . Let $\mathbb P$ be the Příkrý forcing for U, and let G be $\mathbb P$ -generic over V. Then

$$L[U] = \mathsf{HOD}^{L[U][G]} = <\kappa - \mathsf{HOD}^{L[U][G]} \subsetneq <\kappa^+ - \mathsf{HOD}^{L[U][G]} = L[U][G].$$

In particular, $\Lambda_0 = \kappa^+$ is the successor of a limit cardinal of countable cofinality in L[U][G].

Theorem

If ZFC is consistent with a measurable cardinal, then ZFC is also consistent with the existence of a singular limit leap of countable cofinality, whose cardinal successor is a leap.

Thank you for your attention!