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Definition
β −→ (γ, δ)2 means that every graph on a set of size β has an
independent set of size γ or a complete subgraph of size δ.

Definition
r(γ, δ) = β means β −→ (γ, δ)2 but ζ 6−→ (γ, δ)2 for all ζ < β.

Example
r(3, 3) = 6.
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Erdős-Sós-Conjecture

A Table

An Upper Bound

A Lower Bound

Another Table

An Analogous Result

Finite Multiples of ω2

A Definition

A Characterisation

A Counterexample

Strong agreeability

Results in the Uncountable

Dropping a colour

Coda

Other results

Open Questions

References

Notation
For a graph G let

I n = nG be the number of its vertices,

I e = eG be the number of its edges and

I d = dG = 2eG
nG

be its average degree.

I dmax = dmax
G be its maximum degree.

I α = αG the minimal size of an independent set.

Theorem (Turán, ?)
α >

n

d+ 1
.
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Observation
For triangle-free graphs, α > d.

Corollary
n(n+ 1) −→ (n, 3)2.

Theorem (Erdős, 1961)

There is a constant c > 0 such that

⌊
cn2

(ln(n))2

⌋
6−→ (n, 3)2 for all

natural numbers n.

Theorem (Graver & Yackel, 1968)

There is a constant c > 0 such that

⌊
cn2 ln(ln(n))

ln(n)

⌋
−→ (n, 3)2

for all natural numbers n.
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Theorem (Ajtai, Komlós & Szemerédi, 1980)

There is a constant c > 0 such that

⌊
cn2

ln(n)

⌋
−→ (n, 3)2 for all

n ∈ ω \ 2.

Theorem (Shearer, 1982)

α >
n(d ln(d) + 1− d)

(d− 1)2
for triangle-free graphs.

Corollary
An version of the Theorem of Ajtai, Komlós, and Szemerédi with
smaller c.
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Theorem (Kim, 1995)

There is a constant c > 0 such that

⌊
cn2

ln(n)

⌋
6−→ (n, 3)2 for all

n ∈ ω \ 2.

Corollary

There is a constant c > 0 such that

⌊
cn2

ln(n)

⌋
6−→ (In, L3)2 for all

n ∈ ω \ 2.

Notation
k −→ (Im, Ln)2 if and only if every oriented graph on a set of size
k has an independent set of size m or a complete cyclefree
subgraph of size n.

Theorem (Erdős & Rado for κ = ω, Baumgartner for
cardinals κ > ω)
κk −→ (κm, n)2 if and only if k −→ (Im, Ln)2 for all infinite
cardinals κ.
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Theorem (Ramsey’s Theorem for two colours)
ω −→ (ω, ω)n for every natural number n.

Definition
r(Ik, Lm) = n means n −→ (Ik, Lm)2 but p 6−→ (Ik, Lm)2 for all
p < n.

Example (Erdős & Rado, 1956)
r(I2, L3) = 4.

Example (Bermond, 1974)
8 6−→ (I3, L3)2.
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x 7→ x+ 3
x 7→ x+ 2.
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Theorem (Stearns, 1959)
2n−1 −→ (I2, Ln)2 for all natural numbers n.

Example (Larson & Mitchell, 1997)
13 6−→ (I4, L3)2.

Theorem (Larson & Mitchell, 1997)
n2 −→ (In, L3)2 for all natural numbers n.

Theorem (Ihringer, Rajendraprasad & W.)
n2 − n+ 3 −→ (In, L3)2 for n ∈ ω \ 2.
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Lemma
r(In+1, Lm+l) < 2r(In+1, Lm) + r(In, Lm+1) + 1.

Proposition
We have r(Im, Ln) 6 v(m,n) for all natural numbers m and n
with m > 2 and n > 3 where

v(m,n) :=

n−2∑
i=0

(
i+m− 1

i+ 1

)
2i −

(
m+ n− 6

m− 4

)
2n−3 + 1.

Example (Rajendraprasad)
14 6−→ (I4, L3)2.

Corollary
r(I4, L3) = 15.
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x 7→ x+4 if x is even
x 7→ x−6 if x is odd.
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Example
22 6−→ (I5, L3)2.

Corollary
r(I4, L3) = 23.
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Theorem (Alon, 1996)
Considering a graph with at least one edge in which the
neighbourhood of any vertex is r-colourable, we have

α >
n ld(dmax)

160dmax ld(r + 1)
.

Corollary⌊
508n2

ld(n)

⌋
−→ (In, L3)2.
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Lemma (Alon, 1996)
Let F be a family of k distinct subsets of an n-element set X .
Then the average size of a member of F is at least

ld(k)

10 ld
(

ld(k)+n
ld(k)

) .

Lemma (Tentative Improvement, Almost Proven)
Let F be a family of k distinct subsets of an n-element set X .
Then the average size of a member of F is at least
(3−

√
8) ld(k)

ld
(

ld(k)+n
ld(k)

) .

Note that 3−
√

8 > 1
6 .
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The Lemma would yield the following:

Proposition (Almost Proven)
Considering a graph with at least one edge in which the
neighbourhood of any vertex is 2-colourable, we have

α >
n ld(dmax)

13dmax
.

Corollary (Almost Proven)⌊
26n2

ld(n)

⌋
−→ (In, L3)2 for all natural numbers n.



Ordinal Ramsey
Theory

Thilo Weinert
University of Vienna

Introduction

Hungarian Notation

Terminology

Classical Results

. . . in the Finite

. . . in the Infinite

Earlier Work

An Improved Upper Bound

Examples

Almost Results

An
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This all hinges on proving the seemingly true inequality

H

( (
2−
√

2
)
x

2 ld
(
1 + 1

x

)) 6 x for all x ∈ [0, 1]

where H is the binary entropy function

H :]0, 1[−→R
x 7−→ − ld (x)x− ld (1− x) (1− x)



Ordinal Ramsey
Theory

Thilo Weinert
University of Vienna

Introduction

Hungarian Notation

Terminology

Classical Results

. . . in the Finite

. . . in the Infinite

Earlier Work

An Improved Upper Bound

Examples

Almost Results

An
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H( 2−
√
2)x

2 ld(1+ 1
x )

) and x
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Erdős-Sós-Conjecture

A Table

An Upper Bound

A Lower Bound

Another Table

An Analogous Result

Finite Multiples of ω2

A Definition

A Characterisation

A Counterexample

Strong agreeability

Results in the Uncountable

Dropping a colour

Coda

Other results

Open Questions

References

Observation
r(n+ 1, 3)− r(n, 3) 6 n+ 1.

Proof.
Fix a vertex v in a graph on r(n, 3) + n+ 1 vertices. Then either
v has a neighbourhood of n+ 1 vertices or v is independent from
a set of size r(n, 3).
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Proposition (Graver & Yackel, 1968)
Let G be a (3, y)-graph on n points with e edges. Let p1 and p2
be two points of G a distance of at least 5 apart (i.e., any path
joining p1 and p2 has at least 5 edges). Denote the valence of pi
by vi(i = 1, 2); and let Ki represent the vi points which are
adjacent to pi. Finally let G′ be the graph formed by removing
from G the points p1 and p2 and all edges with p1 or p2 as
end-points, and then adding all edges between points in K1 and
points in K2. Then G′ is a (3, y − 1)-graph on (n− 2) points with
[e+ (v1 − 1)(v2 − 1)− 1] edges

Corollary
r(n+ 1, 3)− r(n, 3) > 3 for all n ∈ ω \ 2.

Conjecture (Erdős & Sós)
lim inf
n↗∞

r(n+ 1, 3)− r(n, 3) =∞.
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Observation
r(In+1, L3)− r(In, L3) 6 2n+ 1.

Proof.
Fix a vertex v in a graph on r(In, L3) + 2n+ 1 vertices. Then
either v has an in-neighbourhood of n+ 1 vertices or an
out-neighbourhood of n+ 1 vertices or v is independent from a set
of size r(In, L3).

Proposition
Let e, i, and n be natural numbers. If there is an oriented graph
all whose triangles are cyclic and all whose independent sets are
smaller than i,with e edges on n vertices one of which is v having
degree d, then there is an oriented graph on n+ 5 vertices with
2d+ e+ 9 edges all whose triangles are cyclic and all whose
independent sets have size at most i.

Corollary
r(In+1, L3) > r(In, L3) + 5 for all n ∈ ω \ 2.
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Erdős-Sós-Conjecture

A Table

An Upper Bound

A Lower Bound

Another Table

An Analogous Result

Finite Multiples of ω2

A Definition

A Characterisation

A Counterexample

Strong agreeability

Results in the Uncountable

Dropping a colour

Coda

Other results

Open Questions

References

N−(v)

v

N+(v)

p

q

r

s

t

u



Ordinal Ramsey
Theory

Thilo Weinert
University of Vienna

Introduction

Hungarian Notation

Terminology

Classical Results

. . . in the Finite

. . . in the Infinite

Earlier Work

An Improved Upper Bound

Examples

Almost Results

An
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Definition
We identify 0 with red, 1 with blue and 2 with green arrows.
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Theorem
For i ∈ 3 \ 1 and κ ∈ Ω \ 3 such that κ −→ (κ)22 the partition
relation κil −→ (κim,n) holds true if and only if every coloured
digraph C = 〈l, A, c〉 with ran(c) = 2i−1 contains an independent
set of size m or there is a subtournament S of C induced by a set
of n vertices such that all triples in S are agreeable.

Lemma
r(In+1, A3) 6 r(In, A3) + 2r(In+1, L3) + 4n− 1 for all n ∈ ω \ 2.

Theorem
For all n ∈ ω \ 2 we have

r(In, A3) 6
(2n+ 1)(n2 + 4n− 6)

3
. (1)
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Theorem
r(I2, A3) = 10.

Proof.
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Theorem (Hajnal, 1971)
The continuum hypothesis implies ω2

1 6−→ (ω2
1 , 3)2.

Theorem (Erdős & Hajnal, 1973)
The continuum hypothesis implies ω1ω 6−→ (ω1ω, 3)2.

Theorem (Baumgartner, 1975)
ω2
1 −→ (ω2

1 , 3)2 implies the Souslin hypothesis.

Theorem (Takahashi, 1987)
|• = ℵ1 implies ω2

1 6−→ (ω2
1 , 3)2.

Theorem (Takahashi, 1987)
d = ℵ1 = |• implies ω1ω 6−→ (ω1ω, 3)2.

Theorem (J. Larson, 1998)
d = ℵ1 implies ω2

1 6−→ (ω2
1 , 3)2.

Theorem (J. Larson, 1998)
d = ℵ1 implies ω1ω 6−→ (ω1ω, 3)2.
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Theorem (Lambie-Hanson & W., 2016)
b = ℵ1 = |• implies ω1ω 6−→ (ω1ω, 3)2.

Theorem (Baumgartner, 1989)
MAℵ1 implies ω1ω −→ (ω1ω, n)2 for all natural numbers n.

Definition
A triple is called strongly agreeable if and only if it is agreeable
and does not contain any green arrow. So it is strongly agreeable
precisely if it is one of these:
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Theorem
r(κλm, n) = κλr(Im, Sn) for κ weakly compact and any cardinal
λ ∈ κ \ ω.

Theorem
If MAℵ1 holds true then r(ω1ωm,n) = ω1ωr(Im, Sn).

Lemma
r(Im+1, S3) 6 r(Im, S3) + 4m+ 1 for all m ∈ ω \ 2.

Theorem
For all m ∈ ω \ 2 we have r(Im, S3) 6 m(2m− 1).

Lemma
For all n ∈ ω \ 3 we have r(I2, Sn+1) 6 4r(I2, Sn)− 2.

Theorem
For any n ∈ ω \ 3 we have

r(I2, Sn) 6
4n−1 + 2

3
.
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Lemma
r(Im+1, Sn+1) 6 r(Im, Sn+1) + 4r(Im+1, Sn)− 3 for all
m ∈ ω \ 2 and all n ∈ ω \ 3.

Theorem
For all m ∈ ω \ 2 and all n ∈ ω \ 3 we have r(Im, Sn) 6 u(m,n)
where

u(m,n) :=
1

4

(
3 +

n−1∑
i=0

(
i+m− 2

i

)
4i
)
. (2)
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Theorem
r(I2, S3) = 6.

Proof.
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Theorem
r(I3, S3) = 15.

Proof.
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Theorem (Specker, 1956)
ω2 −→ (ω2, n)2 for every natural number n.

Theorem (Specker, 1956)
ω3 6−→ (ω3, 3)2.

Theorem (Nosal, 1972)
r(ω3, n) = ωbld(n)c+2.

Theorem (Nosal, 1976)
r(ωm, n) = ω1+bld(n)c(m−1) for m ∈ ω \ 5.

Theorem (Chang & Milner)
ωω −→ (ωω, n)2 for all natural numbers n.
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Theorem (Chang, Darby & Schipperus)
If the additive normal form of β < ω1 has one or two summands,

then ωωβ −→ (ωωβ , 3)2.

Theorem (Darby, Schipperus, Larson)
If β > γ > 1, then ωωβ+γ 6−→ (ωωβ+γ , 5)2.

Theorem (Darby & J. Larson)
ωω2 −→ (ωω2

, 4)2.
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Question
What is r(I3, L4)2?

We know that r(I3, L4) ∈ 25 \ 21 = {21, 22, 23, 24}.
For context:

Theorem (Codish, Frank, Itzhakov & Miller, 2016)
r(3, 3, 4) = 30.

Question
What is the order of growth of r(In, A3)?

Question
lim inf
n↗∞

r(In+1, L3)− r(In, L3) =∞?

Question
lim inf
n↗∞

r(In+1, S3)− r(In, S3) =∞?

Question
lim inf
n↗∞

r(In+1, A3)− r(In, A3) =∞?
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Question
Can Nosal’s theorem be extended to
r(ωm, n) = ω1+bld(n)c(m−1) for m ∈ ω \ 4?

Question
ωω3 −→ (ωω3

, 3)2?

Question
Is ω2

1 −→ (ω2
1 , 3)2 consistent?
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