SET THEORY RESEARCH SEMINAR, JUNE 28, 2022

15:00-15:25, Fortunato Maesano

Title: Set versions of star compact and star Lindelöf properties

Abstract: Given a topological space X and an open cover \mathcal{U} of it, the star of a subset A of X with respect to \mathcal{U} is the set $st(A,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap A \neq \emptyset\}$. For a space, the properties to be covered by stars founded on a finite or a countable subset of the cover are called star compact and star Lindelöf properties, both are weaker tha countable compactness and stronger than their pseudo covering property counterpart. We present a new class of star covering properties, namely the set star covering properties, which were introduced by Kočinac, Konca and Singh, and consist on a generalization both of the previously cited ones and other already known. This is a joint work with M. Bonanzinga (University of Messina).

15:30-15:55, Lukas Schembecker

Title: Partitions of Baire space into compact sets

Abstract: We define a c.c.c. forcing which adds a maximal almost disjoint family of finitely splitting trees on ω (a.d.f.s. family) or equivalently a partition of Baire space into compact sets of desired size. Furthermore, under CH we construct a Sacks-indestructible maximal a.d.f.s. family (by countably supported iteration and product). This is joint work with V. Fischer.

16:00-16:15, Marlene Koelbing

Title: Covering arrays and independent families

Abstract: For ordinal numbers N and k a covering array is an $N \times k$ matrix with entries in some set v such that in every $N \times t$ subarray, each element of v^t occurs. First I will discuss some facts about finite covering arrays, then I will show the existence of an $\omega \times \mathfrak{c}$ covering array, using the connection between covering arrays and independent families.

16:15-16:30, Alexander Wendlinger

Title: Ideals associated to independent families

Abstract: In this talk we will introduce and briefly discuss two ideals, which are naturally associated to independent families and capture important relevant properties.

16:45-17:40, Ömer Faruk Bag

Title: Global Mad Spectra

Abstract:: We address the issue of controlling the spectrum of maximal almost disjoint families globally, i.e. for more than one regular cardinal κ simultaneously. Assuming we show that there is a cardinalpreserving generic extension satisfying $\forall \kappa \in C(\mathfrak{sp}(\mathfrak{a}_{\kappa}) = B(\kappa))$ where C denotes the class of successors of regular cardinals together with \aleph_0 and $B(\kappa)$ is a prescribed set of cardinals to which we refer as a κ -Blass spectrum. This is joint work with V. Fischer and S. D. Friedman.

17:45-18:10, Julia Millhouse

Title: Suslin trees and Sacks coding

Abstract: In recent years, a proper forcing notion was introduced by S. Friedman and V. Fischer, a variation of Sacks forcing that uses perfect trees as a tool for coding subsets Y of ω_1 , where Y is generic over the constructible universe L and in L[Y] cofinalities have not been changed. Primary applications of this coding technique have been to produce combinatorial objects of a certain projective complexity, such as well orderings of the reals, mad families, and cofinitary groups. In this talk I will define and state the main properties of this forcing notion which will be of importance to the result I then sketch, showing that if there is a Suslin tree in the ground model, then it remains Suslin after Sacks coding; a 1993 theorem of T. Miyamoto then allows this preservation result to extend to countable support iterations. This is joint work with V. Fischer and C. B. Switzer.

18:15-18:30, Roman Doerner

Title: On gaps in $\omega \omega$

Abstract: Given a gap in ${}^{\omega}\omega$, we discuss its behaviour under forcing with certain classes of partially ordered sets. We present selected results regarding the destructibility and indestructibility of gaps under forcing and give an example of a forcing that renders a given gap indestructible.