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Plan for this lecture

In this lecture, I will introduce extremal fields and present a
result that will lead us back to deeply ramified and perfectoid
fields. As a preparation, we will introduce and discuss large
fields, and take the occasion to give examples for the wall of
imperfection.
Take an extension L|K. By a place of L|K we mean a place of L
whose restriction to K is the identity. Note that if P is trivial on
K, i.e., its restriction to K is an isomorphism σ on K, then it is
equivalent to the place P′ of L which is defined by
aP′ := τ−1(aP), where τ is an extension of σ to the residue field
LP, which yields that the restriction of P′ to K is the identity. A
place of an extension L of K is rational if LP = K. By what we
just said, we can always assume, modulo equivalence, that it is
a place of L|K.
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Large fields

Following Florian Pop [P 1995, 1996], a field K is called a large
field (or ample field) if it satisfies one of the following
equivalent conditions:
(LF) For every smooth curve over K the set of rational points is
infinite if it is non-empty.
(LF′) In every smooth, integral variety over K the set of rational
points is Zariski-dense if it is non-empty.
(LF′′) For every function field F|K in one variable the set of rational
places is infinite if it is non-empty.
For the equivalence of (LF) and (LF′), note that the set of all
smooth K-curves through a given smooth K-rational point of an
integral K-variety X is Zariski-dense in X. If (LF) holds, then
the set of K-rational points of any such curve is Zariski-dense in
the curve, which implies that the set of K-rational points of X is
Zariski-dense in X.
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Large fields

The equivalence of (LF) and (LF′′) follows from two
well-known facts:
a) every function field in one variable is the function field of a
smooth curve (cf. [H 1977], Chap. I, Theorem 6.9), and
b) every K-rational point of a smooth curve gives rise to a
K-rational place.
The latter is a special case of a much more general result:

Theorem (*)

Assume that the affine irreducible variety V defined over K has a
simple K-rational point. Then its function field admits a rational
place of maximal rank, centered at this point.

This follows from results in [Ab 1956] (see appendix A of
[JR 1980]). For a rational place P of a function field F|K, to be of
maximal rank means that P is the composition of trdeg F|K
many places with archimedean value groups.
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Large fields

Theorem (**)

The following conditions are equivalent:
1) K is a large field,
2) K is existentially closed in every function field F in one variable
over K which admits a K-rational place,
3) K is existentially closed in the henselization K(t)h of the rational
function field K(t) with respect to the t-adic valuation,
4) K is existentially closed in the field K((t)),
5) K is existentially closed in every extension field which admits a
discrete K-rational place.

The canonical t-adic place of the fields K(t)h and K((t)) is
discrete, and it is trivial on K and K-rational. Therefore, 5)
implies 3) and 4).
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Large fields

In [L 1954], Serge Lang proved that every field K complete
under a rank one valuation is large. But this already follows
from the fact that such a field is henselian. Indeed, if a field K
admits a non-trivial henselian valuation, then the Implicit
Function Theorem holds in K (cf. [PrZi 1978]). Using this fact, it
is easy to show that K satisfies (LF). On the other hand, it is also
easy to prove, via an embedding lemma, that such K satisfies
condition 3) of the foregoing theorem. We note:

Proposition

If a field K admits a non-trivial henselian valuation, then it is large.
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Rational place = existentially closed?

In view of condition 5) of Theorem (**), the question arises
whether the existence of a K-rational place of an extension field
L of a large field K always implies that K is existentially closed
in L. We will see that this is at least true for perfect fields K.
Theorem (**) leads us to ask whether large fields satisfy
assertions even stronger than those in that theorem. The
following has been proved in [K 2004b]:

Theorem (***)

Let K be a perfect field. Then the following conditions are equivalent:
1) K is a large field,
2) K is existentially closed in every power series field K((Γ)).
3) K is existentially closed in every extension field L which admits a
K-rational place.
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Rational place = existentially closed?

In particular, we obtain:

Theorem

Let K be a perfect field which admits a henselian valuation. Assume
that the extension field L of K admits a K-rational place. Then K is
existentially closed in L.

A field K is existentially closed in an extension field L if it is
existentially closed in every finitely generated subextension F
in L. If L admits a K-rational place P, then every such function
field F admits a K-rational place, namely, the restriction of P.
Hence, condition 3) of the foregoing theorem is equivalent to
the following condition on K:
(RP=EC) If an algebraic function field F|K admits a rational place,
then K is existentially closed in F.
By Theorem (**), every field K which satisfies (RP=EC) is large.
Let us see what we can say about the converse.
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Places admitting smooth local uniformization

An Abhyankar place is a place whose associated valuation is an
Abhyankar valuation. In [KnK 2005] the following is shown:

Theorem
Every function field with a rational discrete or rational Abhyankar
place admits smooth local uniformization.

In [K 2004b] this result is extended to:

Theorem (†)

The rational discrete places, the rational places of maximal rank, and
the rational Abhyankar places lie dense in the space of all rational
places of F|K which admit smooth local uniformization.

Note that every place of maximal rank is an Abhyankar place.
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Density in Zariski spaces

Take a function field F|K. For a place P on F, we denote by OP
its valuation ring, and byMP the maximal ideal.
By S(F|K) we denote the set of all places of F|K. It is called the
Zariski space (or Zariski–Riemann manifold) of F|K. S(F|K)
carries the Zariski-topology, for which the basic open sets are
the sets of the form

{P ∈ S(F|K) | a1 , . . . , ak ∈ OP} , (1)

where k ∈N∪ {0} and a1, . . . , ak ∈ F.
With this topology, S(F|K) is a spectral space (cf. [Ho 1969]); in
particular, it is quasi-compact.
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Density in Zariski spaces

The density statement in Theorem (†) refers to the associated
patch topology (or constructible topology), which is the finer
topology whose basic open sets are the sets

{P ∈ S(F|K) | a1 , . . . , ak ∈ OP ; b1 , . . . , b` ∈ MP} , (2)

where k, ` ∈N∪ {0} and a1, . . . , ak, b1, . . . , b` ∈ F. With the
patch topology, S(F|K) is a totally disconnected compact
Hausdorff space.
The density of several special sets of places in S(F|K) has been
shown in [KPr 1984], [K 2004b], and [BKK 2022], using the
model theory of henselian fields with residue characteristic 0
and of tame fields, and several applications have been given.
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Rational place = existentially closed?

Take a function field F|K with a rational place P which admits
local uniformization. That is, F|K admits a model on which P is
centered at a simple K-rational point. By Theorem (*), F also
admits a K-rational place Q of maximal rank. Hence by
Theorem (†), F|K also admits a rational discrete place. If K is
large, then it follows from Theorem (**) that K is existentially
closed in F. This proves the following well known result:

Theorem (††)

Let K be a large field and F|K an algebraic function field. If there is a
rational place of F|K which admits local uniformization, then K is
existentially closed in F.
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Rational place = existentially closed?

As an immediate consequence, we obtain:

Theorem
Assume that all rational places of arbitrary function fields admit local
uniformization. Then every large field satisfies (RP=EC), and the
three conditions of Theorem (***) are equivalent, for arbitrary fields K.

Does the converse also hold?
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Rational place = existentially closed?

Theorem (††) together with Theorem (†) implies:

Corollary

Let K be a large field and F|K an algebraic function field. If there is a
rational discrete or a rational Abhyankar place of F|K, then K is
existentially closed in F.

For the case of F|K admitting a rational discrete place P, the
assertion is already contained in Theorem (**).
To conclude with, let us state a converse of our above results.

Theorem ([K 2004b])

Let F|K be an algebraic function field such that K is existentially
closed in F. Take any elements z1, . . . , zn ∈ F. Then there are
infinitely many (nonequivalent) rational places of F|K of maximal
rank which are finite on z1, . . . , zn .
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Rational place = existentially closed?

An even stronger version of this theorem has been proven and
put to work in [BKK 2022]:

Theorem
Take an algebraic function field F|K such that K is existentially closed
in F. Take any nonzero elements z1, . . . , zn ∈ F. Further, choose
r ∈N such that 1 ≤ r ≤ s = trdeg F|K, and an arbitrary ordering
on Zr; denote by Γ the so obtained ordered abelian group. Then there
are infinitely many (nonequivalent) rational places P ∈ S(F|K) such
that vPF = Γ and ziP 6= 0, ∞ for 1 ≤ i ≤ n.
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Extremal fields

A valued field (K, v) with valuation ring O and value group vK
is called extremal if for every multi-variable polynomial
f (X1, . . . , Xn) over K the set

{vf (a1, . . . , an) | a1, . . . , an ∈ O} ⊆ vK ∪ {∞}

has a maximal element. This notion was introduced by Yuri
Ershov in [Er 2004] in connection with valued skew fields
which are finite-dimensional over their center. It turns out that
the original definition given in that paper (and also in talks
given by its author) which has “K” in place of “O”, is flawed in
the sense that there are no extremal valued fields except for
algebraically closed valued fields. Consequently, Proposition 2
of the cited paper, under Ershov’s original definition, is false.
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Ershov’s “theorem”

Proposition 2 of [Er 2004] says:

Proposition

Every henselian defectless discretely valued field is extremal.

This implies that for each field k, the Laurent series field
(k((t)), vt) is extremal.
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Starchenko’s counterexample

In 2009 during a program at the Fields Institute, I worked with
Salih Azgin (now Durhan) on a classification of extremal fields.
There, we met Sergei Starchenko, who provided us with the
following counterexample to Ershov’s proposition. Consider
the polynomial

f (X, Y) = X2 + (XY− 1)2

over the Laurent series field (R((t)), vt). Observe that

vt f (tn, t−n) = 2n for all n ∈N ,

but f (a, b) 6= 0 for all a, b in the formally real field R((t)).
Hence, the set {vf (a, b) | a, b ∈ R((t))} has no maximal element
in Z∪ {∞}, which shows that Ershov’s proposition does not
hold with his original definition.
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Proposition holds with corrected definition

However, in [AKP 2012] we were able to prove that the
proposition holds with the corrected definition that we have
given above. (Note that in Starchenko’s example, the values
vtt−n are not bounded from below.)
We obtain that (Fp((t)), vt) is extremal. On the other hand, it is
easily seen that this property is elementary. Thus, in view of the
open questions about Fp((t)), it is important to study the
algebra and model theory of extremal fields.
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Elementary properties of Fp((t))

In [K 2001], axioms about additive polynomials were
formulated in the hope that adding them to the “naive axiom
system” for Fp((t)) will result in a complete system (cf. Lecture
IV). Let us have a closer look. A subset A of a valued field
(K, v) has the optimal approximation property if for every
z ∈ K there is some y ∈ A such that

v(z− y) = max{v(z− x) | x ∈ A} .

In general, y is not unique; this is why we do not talk of “best
approximation”. The axioms mentioned above for a valued
field (K, v) of positive characteristic say that under certain
conditions on an additive polynomial f in several variables, the
image of K under f has the optimal approximation property. It
was shown in [K 2001] that these axioms hold in all maximal
fields.
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Elementary properties of Fp((t))

It was then shown in [DK 2002] that in Fp((t)) the conditions
on the additive polynomials are not needed:

Theorem
If f is an additive polynomial in several variables with coefficients in
Fp((t)), then the image of Fp((t)) under f has the optimal
approximation property.

The proof uses that (Fp((t)), vt) is locally compact.
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Connection with extremality

In order to exhibit the connection between optimal
approximation property and extremality, we introduce the
definition of extremality with respect to specific sets of
polynomials. Take a valued field (K, v) and a subset S ⊆ K. If f
is a polynomial in n variables with coefficients in K, then we
will say that (K, v) is S-extremal with respect to f in K if the set

vf (Sn) := {vf (a1, . . . , an) | a1, . . . , an ∈ S} ⊆ vK ∪ {∞} (3)

has a maximum in vK ∪ {∞}. Hence (K, v) is extremal if it is
O-extremal with respect to every polynomial f in several
variables with coefficients in K.
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Connection with extremality

Take a field K of characteristic p > 0. A polynomial
h ∈ K[X1, . . . , Xn] is called a p-polynomial if it is of the form
f + c, where f ∈ K[X1, . . . , Xn] is an additive polynomial and
c ∈ K. The proof of the following observation is
straightforward:

Lemma

The images of all additive polynomials over (K, v) have the optimal
approximation property if and only if K is K-extremal with respect to
all p-polynomials with coefficients in K.
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Connection with extremality

From this lemma, we derive in [AnK 2016]:

Theorem
If (K, v) is an extremal field of characteristic p > 0 with
[K : Kp] < ∞, then the images of all additive polynomials have the
optimal approximation property.

Open problem: Does the assertion of this theorem fail in the
case of [K : Kp] = ∞?
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An axiom system for Fp((t))

We see that the following axiom system is satisfied by Fp((t)):

“henselian defectless extremal field
of characteristic p
whose value group is a Z-group,
and whose residue field is Fp”.

 (4)

On the other hand, we know that the assertion that the image
of all additive polynomials has the optimal approximation
property follows from these axioms. Therefore, this axiom
system is a good (and elegant) candidate for the axiomatization
of Fp((t)). Unfortunately, it is still not known whether it is
complete. We need to know more about extremal fields.
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Applications of the notion of extremality

Before I turn to the structure theory of extremal fields, let me
mention that the flexible notion of extremality also enables us
to show that certain properties of valued fields are elementary.
For example,
• (K, v) is algebraically maximal if and only if it is K-extremal
(or O-extremal) with respect to all polynomials in one variable
with coefficients in K.
• (K, v) is inseparably defectless if and only if it is K-extremal
(or O-extremal) with respect to certain p-polynomials.
For more details, see [K 2010a].
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Characterization of extremal fields

In 2009 at the Fields Institute, we co-opted Florian Pop, as an
expert for large fields, for our project of characterizing extremal
fields. In [AKP 2012], we gave a partial characterization. This
was improved in joint work with Sylvy Anscombe in
[AnK 2016], but it is still partial:

Theorem
Let (K, v) be a nontrivially valued field. If (K, v) is extremal, then it
is henselian defectless and

(i) vK is a Z-group, or
(ii) vK is divisible and Kv is large.

Conversely, if (K, v) is henselian defectless and
(i) vK ' Z, or vK is a Z-group and char Kv = 0, or

(ii) vK is divisible and Kv is large and perfect,
then (K, v) is extremal.
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Maximality does not imply extremality

After I was introduced to Ershov’s notion of extremality, for
some time I guessed that all maximal valued fields should be
extremal. However, the conditions on the value groups and
residue fields clearly show that this is not the case. Conversely,
extremal fields need not be maximal (which is clear, as the
former property is elementary, while the latter is not.)
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Characterization of extremal fields

Things become easy for tame fields. Tame fields of positive
residue characteristic p > 0 are henselian defectless, and they
have p-divisible value groups which consequently are not
Z-groups. On the other hand, all henselian defectless valued
fields with divisible value group and perfect residue field are
tame fields. Therefore, in the case of positive residue
characteristic and value groups that are not Z-groups, the
theorem is in fact talking about tame fields:

Theorem

A tame field of positive residue characteristic is extremal if and only if
its value group is divisible and its residue field is large.
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Extremality is stronger than optimal approximation
property

Corollary

There are perfect non-extremal fields of positive characteristic in
which the images of all additive polynomials have the optimal
approximation property.

This shows that extremality is stronger than the assertion that
the images of all additive polynomials have the optimal
approximation property. This begs the questions:
Are there elementary properties of additive polynomials that
are not expressed by the optimal approximation property?
Or are there other elementary properties of extremal fields of
positive characteristic that do not follow from those connected
with additive polynomials and the “naive axiom system”?
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Characterization of extremal fields

Beyond tame fields, we hit the wall of imperfection. The gap in
the above characterization is made obvious by the following:

Proposition

a) There are henselian defectless valued fields (K, v) of positive
characteristic with value group a Z-group that are extremal, and
others that are not.
b) There are henselian defectless valued fields (K, v) of mixed
characteristic with value group a Z-group that are extremal, and
others that are not.
c) There are henselian defectless nontrivially valued fields (K, v) of
positive characteristic with divisible value group and imperfect large
residue field that are extremal, and others that are not.
d) There are henselian defectless valued fields (K, v) of mixed
characteristic with divisible value group and imperfect large residue
field that are extremal, and others that are not.
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Characterization of extremal fields

None of the non-extremal fields that we construct for the proof
of this proposition are maximal. This leads us to the following
Conjecture: Every maximal field with value group a Z-group,
or divisible value group and large residue field, is extremal.
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A theorem on ℵ1-saturated valued fields

The following theorem provides a compelling way of
constructing maximal extremal fields and is used in the proof
of parts c) and d) of the previous theorem.

Theorem
Let (K, v) be any ℵ1-saturated valued field. Assume that Γ and ∆ are
convex subgroups of vK such that ∆ ( Γ and Γ/∆ is archimedean.
Let u (respectively w) be the coarsening of v corresponding to ∆ (resp.
Γ). Denote by ū the valuation induced on Kw by u. Then (Kw, ū) is
maximal, extremal and large, and its value group is isomorphic either
to Z or to R. In the latter case, also Ku = (Kw)ū is large.
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Application to deeply ramified fields

Every perfectoid field is a henselian semitame field of rank 1.
Take an ℵ1-saturated elementary extension (K, v) of such a
field. Then it is also henselian and semitame.
Assume that (K, v) is of mixed characteristic. Consider the
canonical decomposition v = v0 ◦ vp ◦ v̄ which we introduced in
Lecture IV. By the previous theorem, (Kv0, vp) is maximal,
hence defectless. As (K, v0) has residue characteristic 0, it is also
defectless. Consequently, (K, v0 ◦ vp) is defectless, and as v0 ◦ vp
is a coarsening of the henselian valuation v, it is also henselian.
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Application to deeply ramified fields

On the other hand, the following fact was shown in [KR 2022]:
• If (K, v) is a semitame field, then the same holds for every
coarsening of v.
Hence we find that (K, v0 ◦ vp) is a henselian defectless
semitame field, and therefore a tame field.
Further, as vK is an elementary extension of a p-divisible and
thus regular ordered abelian group, and as the value group of
(K, v0 ◦ vp) is the quotient of vK with respect to the nontrivial
convex subgroup v̄(Kv0 ◦ vp), we see that the value group of
(K, v0 ◦ vp) is divisible.
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