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Two classes of (quite similar) valuations

Take any prime number p. Every nonzero element

a =
r
s
∈ Q , where r, s ∈ Z, s 6= 0 ,

can be rewritten as

a = pν r̃
s̃

, where ν, r̃, s̃ ∈ Z , p - r̃, p - s̃ .

Then we set
vpa := ν .

The function vp is called the p-adic valuation on Q. We set
vp0 := ∞.
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Two classes of (quite similar) valuations

Further,
|a|p := p−vpa

is the p-adic absolute value.
Taking the completion of Q with respect to the topology
induced by |.|p , we obtain Qp , which is called the field of p-adic
numbers. The canonical extension of vp to Qp will again be
denoted by vp . Contrary to what holds in the completion R of
Q with respect to the topology induced by the usual absolute
value |x|, in Qp two integers are close to each other if their
difference is divisible by a high power of p.
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Two classes of (quite similar) valuations

Take any field K and let K(t) be the rational function field over
K. Every element

r(t) =
f (t)
g(t)

∈ Q , where f , g ∈ K[t], g 6= 0 ,

can be rewritten as

r(t) = tν f̃ (t)
g̃(t)

, where ν ∈ Z , f̃ , g̃ ∈ K[t] , t - f̃ , t - g̃ .

Then we set
vtr(t) := ν .

The function vt is called the t-adic valuation on K(t). We set
vt0 := ∞.
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Two classes of (quite similar) valuations

Taking the completion of K(t) with respect to the topology
induced by vt, we obtain K((t)) , which is called the field of
(formal) Laurent series. The canonical extension of vt to K((t))
will again be denoted by vt .

This completion can be presented as a power series field:

K((t)) =

{
∞

∑
i=N

citi | N ∈ Z , ci ∈ K

}
.

Then

vt

∞

∑
i=N

citi = min{i | ci 6= 0}.
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Valuations

In general, a valuation on a field F is a function from F to an
ordered abelian group together with ∞ such that
v(x) = ∞⇔ x = 0,
v(xy) = v(x) + v(y),
v(x + y) ≥ min{v(x), v(y)}.

The value group of v is vF := v(F×),
and its valuation ring is Ov := {x ∈ F | v(x) ≥ 0}.
The unique maximal ideal of Ov isMv := {x ∈ F | v(x) > 0}.
The field Fv := Ov/Mv is called the residue field of v.
The residue map of v is the canonical epimorphism Ov → Fv;
extending it to all of F by sending all elements outside of Ov
to ∞ yields the place associated to v, denoted by Pv or simply P.
We set FP := Fv.
By (F, v) we denote a field with a valuation v.
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The invariants of valued fields

The value group vF and the residue field Fv are called the
invariants of the valued field (F, v).
Both (Q, vp) and (K(t), vt) have value group Z.
Valuation ring and valuation ideal of vp on Q are

Ovp =
{m

n
∈ Q | p - n

}
and Mvp =

{m
n
∈ Q | p - n , p|m

}
.

Consequently, the residue field of (Q, vp) is Z/pZ = Fp .
Valuation ring and valuation ideal of vt on K(t) are

Ovt =

{
f
g
∈ Q | t - g

}
and Mvt =

{
f
g
∈ Q | t - g , t|f

}
.

Since for every f ∈ K[t] there is some c ∈ K such that t|(f − c),
the residue field of (K(t), vt) is K.
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The invariants of Qp and K((t))

If (K, v) is a valued field and L|K is a field extension, then there
is always an extension of v to L. By (L|K, v) we will denote a
valued field extension, where L is endowed with the valuation
v, and K with its restriction. The extension (L|K, v) is called
immediate if the canonical embeddings

vK ↪→ vL and Kv ↪→ Lv

are onto (or in short: vK = vL and Kv = Lv).
Completions are always immediate extensions. Hence, both
(Qp, vp) and (K((t)), vt) have value group Z, (Qp, vp) has
residue field Fp , and (K((t)), vt) has residue field K.
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Comparison of Qp with Fp((t))

For now, we are particularly interested in the case of K = Fp (as
a representative of any finite field).
We have:
1) vpQp = Z = vtFp((t)),
2) Qpvp = Fp = Fp((t))vt ,
3) both valued fields are complete.

However, char Qp = 0, while char Fp((t)) = p.
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Comparison of Qp with Fp((t)): decidability

In 1965, J, Ax and S. Kochen [AxKo 1965], and independently
Yu. Ershov [E 1965/66/67], showed that the elementary theory
Th(Qp, vp) of (Qp, vp) is decidable. The question whether the
same holds for the elementary theory of (Fp((t)), vt) has
remained open. It is worthwhile mentioning that this problem
has connections with the equally open problem of local
uniformization (a local form of resolution of singularities) in
positive characteristic.
How can we prove decidability of a theory? One way is to
present a complete recursive axiomatization.
As the property of of a valued field to be complete is not
elementary, we have to work with a property that represents its
elementary content.
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Henselian fields

A valued field (F, v) is called henselian if v admits a unique
extension to every algebraic extension field, or equivalently, if it
satisfies Hensel’s Lemma:
For every polynomial f ∈ OK[X] the following holds: if b ∈ Ov
satisfies

vf (b) > 0 and vf ′(b) = 0 , (1)

then f admits a root a ∈ OK such that v(a− b) > 0.
This was in fact a lemma proven by Hensel for Qp , but now it
is also used as a property of valued fields, which is elementary.
Every complete valued field of rank 1, i.e., whose value group
is archimedean, or in other words, embeddable in R, is
henselian. (However, this does not hold in higher rank!)

Franz-Viktor Kuhlmann University of Szczecin, Poland Tame fields and beyond, I



Axiomatization for Qp

Here is a complete recursive axiomatization for (Qp, vp):
(K, v) is a henselian valued field with vpp the smallest positive
element of its value group, which is a Z-group, and its residue field
is Fp .
An ordered abelian group Γ is a Z-group if it is elementarily
equivalent to Z, or equivalently, it has Z as a convex subgroup
such that Γ/Z is divisible.

It was already known early on that a direct adaptation of this
axiom system to (Fp((t)), vp), replacing the condition on vpp by
“char K = p”, is not complete. There is an elementary property
that is automatically satisfied by p-adic valuations, but not by
t-adic valuations.
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The Lemma of Ostrowski and the defect

An extension (L|K, v) is called unibranched if the extension of v
from K to L is unique. For a finite unibranched extension
(L|K, v), the Lemma of Ostrowski says:

[L : K] = p̃ν · (vL : vK)[Lv : Kv] , (2)

where ν is a non-negative integer and p̃ is the characteristic
exponent of Kv, that is, p̃ = char Kv if it is positive and p̃ = 1
otherwise.
The factor d(L|K, v) := p̃ν is the defect of the extension (L|K, v).
We call (L|K, v) a defect extension if d(L|K, v) > 1, and a
defectless extension if d(L|K, v) = 1. Nontrivial defect only
appears when char Kv = p > 0, in which case p̃ = p.
The defect is a main obstruction in the model theory of valued
fields and for local uniformization in positive characteristic.
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Defectless fields

A henselian field (F, v) is defectless if no finite extension of
(K, v) has nontrivial defect. Every henselian field (K, v) with
char Kv = 0 is defectless. The field Qp of p-adic numbers is
defectless.

Examples for valued fields that are not defectless:
1) certain infinite algebraic extensions of Qp , such as Qab

p ,
2) if (K, v) is a nontrivially valued field that is not perfect, then
its separable-algebraic closure is henselian, but not defectless,
3) the perfect hull Fp((t))1/p∞

of Fp((t)) is not defectless (as we
will see now).
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Abhyankar’s Example

The extension of vt from Fp((t)) to the purely inseparable
extension K := Fp((t))1/p∞

is unique and will again be denoted
by vt . Take a root ϑ of the Artin-Schreier polynomial

Xp −X− 1
t

.

As an algebraic extension of the henselian field (Fp((t)), vt),
also (K, vt) is henselian. Therefore, the extension (K(ϑ)|K, vt) is
unibranched. It is also immediate, so

(vtK(ϑ) : vtK)[K(ϑ)vt : Kvt] = 1 · 1 = 1 .

Hence by the Lemma of Ostrowski,

d(K(ϑ)|K, vt) = [K(ϑ) : K] = p .
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Abhyankar’s Example

The first examples for defect extensions were inseparable, but
Abhyankar’s Example shows that nontrivial defect can also
appear over perfect fields. For a large collection of other
examples of defect extensions, see [K 2011].
It is worthwhile to note that Abhyankar’s intention was not to
give an example of a defect extension. Instead, he showed by
his example that Puiseux exponents in algebraic extensions in
positive characteristic need not have a common denominator.
In fact, while working implicitly with defects in his attempts to
prove resolution of singularities in positive characteristic, he
never addressed the defect directly.
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Axioms for Fp((t))

It can be shown that all power series fields with their canonical
valuations, hence also (Fp((t)), vt), are defectless fields. This
suggests the following axiom system for (Fp((t)), vt):
(K, v) is a henselian defectless field of characteristic p whose value
group is a Z-group, and whose residue field is Fp .
I will call this the naive axiom system, because unfortunately it
turned out that it is not complete (see [K 2004]). More about
this later. The search for a complete recursive axiom system is
still on.
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On the way to Fp((t))

Let us list the classes of valued fields of positive characteristic
for which some good model theoretic results were known by
the 1980’s.
1) Algebraically closed valued fields (Abraham Robinson);
2) Algebraically maximal Kaplansky fields.
A valued field is called algebraically maximal if it does not
admit proper immediate algebraic extensions. Note that for
Kaplansky fields, “algebraically maximal” is equivalent to
“henselian and defectless”.
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Kaplansky fields

Kaplansky fields were defined by Irving Kaplansky in
[Ka 1942] by means of his famous (but slightly mysterious)
“hypothesis A”. He proved that the maximal immediate
extensions of such a valued field are unique up to isomorphism
over the field. The existence of maximal immediate extensions
of arbitrary valued fields had been proven by W. Krull in
[Kr 1932]; the proof was later improved by K. A. H. Gravett in
[G 1956].
Several authors worked on unravelling and understanding
hypothesis A. The ultimate analysis was developed by M. Pank
in his PhD thesis supervised by P. Roquette, see [KPR 1986]. It
was shown that Kaplansky fields (K, v) can be axiomatized by:
(KAP1) if char Kv = p > 0, then vK is p-divisible,
(KAP2) if char Kv = p > 0, then Kv does not admit finite
extensions whose degrees are divisible by p.
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Kaplansky fields

In particular, the residue field Kv of a Kaplansky field (K, v) is
perfect, and if in addition (K, v) is algebraically maximal, then
also K is perfect. However, axiom (KAP2) asks for more,
namely, that Kv also does not have separable extensions whose
degree is divisible by p. This is a condition that significantly
limits the number of possible applications. On the other hand,
when we drop this part of axiom (KAP2), we lose the
uniqueness.
Some model theoretic results about algebraically maximal
Kaplansky fields have been proved; we will come back to this
later.
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The next step: tame fields

A more natural and applicable class of valued fields is that of
tame fields. A valued field (K, v) is a tame field if it is henselian
and satisfies:
(T1) if char Kv = p > 0, then vK is p-divisible,
(T2) Kv is perfect,
(T3) (K, v) is a defectless field.
Note that compared to algebraically maximal Kaplansky fields,
the condition on the residue field has been relaxed. As now we
are missing the uniqueness of maximal immediate extensions,
proving model theoretic results is considerably more difficult.
Let us give a survey on what is known about the model theory
of tame fields.
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Ax-Kochen-Ershov Principles

J. Ax and S. Kochen [AxKo 1965] proved (a corrected version of)
Artin’s Conjecture. To this end, they showed that if (K, v) and
(L, v) are henselian fields with residue fields of characteristic 0,
then they satisfy the following Ax–Kochen–Ershov Principle:

vK ≡ vL ∧ Kv ≡ Lv =⇒ (K, v) ≡ (L, v) . (3)

We call this the AKE≡ Principle. The following analogue for
elementary extensions will be called the AKE≺ Principle:

(K, v) ⊆ (L, v) ∧ vK ≺ vL ∧ Kv ≺ Lv =⇒ (K, v) ≺ (L, v) . (4)

Also this principle has been proven in the case where (K, v) and
(L, v) are henselian fields with residue fields of characteristic 0.
By the 1980’s, these principles were also known to hold for
other classes of valued fields (algebraically closed, p-adic,
finitely ramified, algebraically maximal Kaplansky).
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A third AKE Principle

IfM is an L-structure andM′ a substructure ofM, then we
will say thatM′ is existentially closed inM and write
M′ ≺∃M if every existential L-sentence with parameters from
M′ which holds inM also holds inM′. For the meaning of
“existentially closed in” in the setting of fields and of ordered
abelian groups, see [KPr 1984]. This notion is important for the
proof of theorems like Nullstellensätze.
The following will be called the AKE∃ Principle:

(K, v) ⊆ (L, v) ∧ vK ≺∃ vL ∧ Kv ≺∃ Lv ⇒ (K, v) ≺∃ (L, v) .
(5)

While it was usually not considered explicitly by other authors,
it was commonly known that this principle holds whenever
(K, v) belongs to one of the above mentioned classes.
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AKE Principles for tame fields

We say that (K, v) is an equicharacteristic valued field if
char K = char Kv, and that it is a mixed characteristic valued
field if char K = 0 and char Kv > 0. The following theorem was
proven in [K 2016]:

Theorem

a) Every extension (L, v) of a tame field (K, v) satisfies the AKE∃

Principle.
b) Every extension (L|K, v) of tame fields (K, v) and (L, v) satisfies
the AKE≺ Principle.
c) Every two equicharacteristic tame fields (K, v) and (L, v) satisfy
the AKE≡ Principle.
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Negative or unknown results

It has been shown in [AnK 2016] that the AKE≡ Principle does
not hold for mixed characteristic tame fields.
It is not known whether tame fields admit quantifier
elimination in a suitable language. It seems highly unlikely that
the various languages that so far have worked for other classes
of valued fields (RV or AMC structures, Pas language) would
work for tame fields. The reason for this is in fact connected
with the non-uniqueness of maximal immediate extensions.
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Decidability for tame fields

As an immediate consequence of the AKE≺ Principle, we
obtain the following criterion for decidability:

Theorem

Let (K, v) be a tame field of equal characteristic. Assume that the
theories Th(vK) of its value group (as an ordered group) and Th(Kv)
of its residue field (as a field) both admit recursive elementary
axiomatizations. Then also the theory of (K, v) as a valued field
admits a recursive elementary axiomatization and is decidable.

In order to apply this theorem, we need some preparations.
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Henselizations

A henselization of the valued field (K, v) is an algebraic
extension of (K, v) which admits a valuation preserving
embedding in every other henselian extension of (K, v).
Henselizations always exist and are unique up to valuation
preserving isomorphism over K; therefore we will talk of the
henselization of (K, v) and denote it by (K, v)h = (Kh, vh).
The henselization of (K, v) is an immediate separable-algebraic
extension. Therefore, all algebraically maximal and all maximal
valued fields are henselian. A valued field is called maximal if
it does not admit any proper immediate extensions.

Franz-Viktor Kuhlmann University of Szczecin, Poland Tame fields and beyond, I



General power series fields

Take any field K and any ordered abelian group Γ. The power
series field with coefficients in K and exponents in Γ, denoted
by K((Γ)), is defined as follows. As a set, it is the collection of
all power series

a := ∑
γ∈Γ

cγtγ

with cγ ∈ K for which the support

supp(a) := {γ ∈ Γ | cγ 6= 0}

is well-ordered. This makes it possible to define multiplication
(while addition is componentwise) and to define the t-adic
valuation (also called minimum support valuation):

vt a := min supp(a) .
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Decidability for tame fields

As an application of the decidability result for tame fields, we
obtain the following:

Theorem
Take q = pn for some prime p and some n ∈N, and an ordered
abelian group Γ. Assume that Γ is divisible or elementarily equivalent
to the p-divisible hull of Z. Then (Fq((tΓ)), vt) is a tame field, and its
elementary theory is decidable.
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Applications of the theory of tame fields

The results on tame fields have been applied in [K 2004] to the
structure theory of spaces of places of algebraic function fields
and to model theoretic questions related to rational places,
large fields and local uniformization. They were also applied
by S. Anscombe and A. Fehm to the problem of the decidability
of the existential theory of Fp((t)). We will come back to some
of these topics later.

We will now discuss the two main theorems used for the proofs
of the results on tame fields. They were also applied to prove
results on local uniformization in positive caharacteristic.
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The Abhyankar Inequality

If Γ is any abelian group, then the rational rank of Γ is
rr Γ := dimQ Q⊗ Γ. This is the maximal number of rationally
independent elements in Γ.
If (F|K, v) is an arbitrary valued field extension of finite
transcendence degree, then we have the Abhyankar inequality:

trdeg F|K ≥ rr vF/vK + trdeg Fv|Kv . (6)

We call v an Abhyankar valuation and its associated place P an
Abhyankar place if equality holds in (6). (In this case we also
say that (F|K, v) is an extension without transcendence defect.)
Note: if v is trivial on K, then vK = 0 and Kv ' K.
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The Generalized Stability Theorem

The first main theorem is:

Theorem (K, thesis 1989; K 2010)
(Generalized Stability Theorem)
Assume that v is an Abhyankar valuation on the function field F|K,
not necessarily trivial on K. If (K, v) is a defectless field, then (F, v) is
a defectless field.

Here is an application, which shows how useful it can be to
work with “existentially closed in” instead of “elementary
extension”.

Theorem
Take an extension (L|K, v) without transcendence defect of a
henselian defectless field (K, v). Then the extension satisfies the
AKE∃ Principle.
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The Henselian Rationality Theorem

By a function field we mean an algebraic function field, i.e., a
finitely generated field extension (usually transcendental).
The second main theorem is:

Theorem ( [K 2019] )
(Henselian Rationality Theorem)
Let (K, v) be a tame field and (F, v) an immediate function field over
(K, v). Assume that F|K is an extension of transcendence degree 1.
Then there is x ∈ F such that F ⊂ K(x)h.

Note that if the latter holds, then Fh = K(x)h; this explains the
name of the theorem.

The theorem is trivial if char Kv = 0, but hard to prove
otherwise.
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More detailed information

A lecture series on valued function fields and the defect can be
found on the web page

https://math.usask.ca/fvk/Fvkls.html.

Preprints and further information:

The Valuation Theory Home Page
http://math.usask.ca/fvk/Valth.html.
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