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Motivation of this talk

Nineteenth-century geometry is characterized by a “structural turn”
of the field:

... a shift from the traditional understanding of geometry as the
science of extension to that as a science of abstract structures.

... a new, model-theoretic understanding of geometrical theories.

How did this transition go?
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The “structural turn” in geometry

Concerning geometry, there was a gradual transformation from
the study of absolute or perceived space – matter and
extension – to the study of structures. (Hellman & Shapiro
2019, p.8)

A striking and characteristic feature of the history of geometry
during the nineteenth century is the increasing “abstracteness”
of its language and the progressive formalization of its
procedure. (Nagel 1939, p.217)
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Structuralist methodology

The new conception of geometry is not just a consequence of
emergence of non-Euclidean geometry, i.e. of the “problem of the
multiplicity of geometries” (Coffa 1986).

More importantly, it is a consequence of several innovations in the
methodology of geometry, developed in different subfields at the
time.

The new ”structural methods” led to an abstraction from the
nature of primitive spatial objects and thus from the traditional
subject matter of geometry. (see Reck (2000, 2003))
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Aims in this paper

Focus on the development of two related structural methods in
nineteenth-century geometry:

1. Transfer principles in analytic projective geometry and in
Klein’s Erlangen Program (1872): mappings between different
systems that show the equivalence of geometries.

2. Hilbert’s use of model constructions and coordinatization in
Grundlagen der Geometrie (1899), e.g., in his independence
and consistency proofs.
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Transfer principles in projective
geometry



The principle of duality in PG

Principle of duality
For any theorem of plane projective geometry we get another
theorem of plane projective geometry by interchanging (1) the basic
terms ‘point’ and ‘line’, (2) the basic relations ‘lies on a line’ and
‘goes through a point’ and (3) accordingly, all notions defined from
these basic notions.
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Desargues’ theorem

Theorem Dual theorem
If three lines joining the corre-
sponding vertices of two triangles
ABC and A

′
B

′
C

′
meet in a sin-

gle point, then the three inter-
sections of pairs of corresponding
sides G ,F ,E lie on a straight line.

If the intersections of correspond-
ing sides of ABC and A

′
B

′
C

′
all

lie on a straight line, then the
lines joining corresponding vertices
meet in a single point.
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The axiomatic approach duality

• Moritz Pasch formulated the first axiom system for projective
geometry in Vorlesungen über Neuere Geometrie (1882).

• §12 discusses reciprocity (i.e. duality) as a property of
statements of projective geometry.

• The justification of the principle of duality in space is based on
(i) the axiomatic presentation of the theory and (ii) the
“rigorous deductive method”: all theorems of projective
geometry are provable from the given set of axioms.

see Schlimm (2010)
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Pasch on reciprocity

The law of reciprocity can be verified first for the graphical
sentences of §§7, 8, 9, since the reciprocal sentence of every
sentence also belongs to this group.

Every other sentence to be considered here is a consequence from
these sentences. (...) Every theorem is thus the result of a
consideration in which only graphical base concepts are mentioned
and in which one only refers to the graphical sentences mentioned
above.

If one substitutes systematically the word “point” by “plane”, “plane”
by “point” and the used theorems by its reciprocals in this approach,
then its correctness remains untouched; but as a result one finds
“point” and “plane” interchanged, i.e. one has proved the reciprocal
theorem. (Pasch 1882, p.96)
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(Plane) Duality reconstructed

Definition (Projective plane)

A projective plane is an incidence structure (of the form 〈p,L, I 〉)
with the following properties:

(PP1) Every two points are incident with a unique line.

(PP2) Every two lines are incident with a unique point.

(PP3) There exist at least four points, three of which are not
collinear.

(PP4) There exist at least four lines, three of which are not
concurrent.
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Fano plane
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An axiomatic (or proof-theoretic) account of duality

• Plane PG can be formulated in a language LPG with two
one-place predicates P, L (for ‘point’ and ‘line’) and a
two-place predicate I (for ‘incidence’ between points and lines).

• Let ϕd be the dual statement of ϕ obtained by translation
(.)d : LPG → LPG st.

(i) [P(x)]d = L(x)

(ii) [L(x)]d = P(x)

(iii) [I (x , y)]d = I ∗(x , y)

Explication (Principle of Duality)

For each statement ϕ ∈ LPG : if P ` ϕ, then P ` ϕd .

Eder & Schiemer (2018)
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The analytic approach to duality

A justification of duality in work by Julius Plücker (1801-1868),
based on the analytic representation of geometric concepts:

E.g. linear equation y + xu + v = 0 presents a straight line in the
plane.

... on its usual interpretation, u, v are treated as constants that
determine a collection of points on a line.

... one can interpret u, v as “line coordinates”. If x , y treated as
constants and u, v as variables, then equation determines a
collection of lines (or a line curve).
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Plücker on reciprocity

Plücker in System der Geometrie des Raumes (1846):

Every geometrical relation is to be viewed as the pictorial
representation of an analytic relation, which, irrespective
of every interpretation, has its independent validity.
Consequently, the principle of reciprocity properly belongs
to analysis, and only because we are accustomed to (...)
express the matter in geometrical language, does it seems
to be an exclusively geometrical principle. (ibid, p.322)
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Duality as a transfer principle

The term ‘transfer principle’ first occurs in Plücker’s work in the
context his discussion of reciprocity.

System der analytischen Geometrie (1935): three “main classes of
transfer principles”, each based on the interpretation of analytic
equations in different coordinate systems: (i) mappings between
point coordinate systems, (ii) mappings between line coordinate
systems; (ii) the reciprocity of line and point coordinate systems.

Plücker argues that, due to the principle of linear reciprocity, “one
can transfer the relations of one of two reciprocal systems to the
other one” (ibid., p.48).
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Hesse’s transfer principle

Transfer principles in projective geometry as a generalization of the
principle of duality.

L. O. Hesse, “Über ein Übertragungsprinzip” (1866):

... a 1-1 correspondence Φ : P → p between points P = (x , y) of
the complex projective plane and pairs of points p = {λ1, λ2} on
the complex projective line,

... given by a quadratic function of the form:

Aλ2 + Bλ+ C = 0

with A,B,C linear functions of coordinates x , y of P .
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A relation between geometries

If one makes to correspond in a univocal way to each
point in the plane a pair of points on the straight line and
vice versa, to each pair of points a point in the plane, one
has a transfer principle which reduces the geometry of the
plane to the geometry of the straight line and vice versa.
(Hesse 1866, p.15)
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Hesse’s principle

Hesse’s mapping Φ is structure-preserving, i.e. it preserves
“relations between figures” (“Figurenverhältnisse”) in the two
systems.

This is established by Hesse in terms of a number of “fundamental
theorems” (“Fundamentalsätze”) that show how central or primitive
projective properties of the objects in the first system correspond to
properties of pairs of points on the fundamental line.

Each theorem about configurations in the plane can be translated
into a theorem about configurations on projective line.
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Transfer principles in Klein’s Erlangen Program

“Comparative considerations of recent developments in geometry”
(1872) is Felix Klein’s programmatic paper related to his
appointment at the university of Erlangen.

Main idea: to study geometries in terms of their transformation
groups and related invariants.
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Geometry as an invariant theory

Given a manifold and a group of transformations of the
same; to investigate the configurations belonging to the
manifold with regard to such properties as are not altered
by the transformations of the group.

Given a manifold and a group of transformations of the
same; to develop the theory of invariants relating to that
group.
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Transfer principles and the equivalence of geometries

Klein’s focus in (1872) is not (primarily) on particular geometries
but on the comparison of different theories in terms of their
transformation groups.

In particular, he uses “transfer principles”
(“Übertragungsprinzipien") to identify geometries with different
domains.

Roughly put, two geometries with isomorphic transformation groups
are “essentially similar”.
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“Transfer by mapping”

Suppose a manifoldness A has been investigated with reference
to a group B. If, by any transformation whatever, A be then
converted into a second manifoldness A′, the group B of
transformations, which transformed A into itself, will become a
group B ′, whose transformations are performed upon A′. It is
then a self-evident principle that the method of treating A with
reference to B at once furnishes the method of treating A′

with reference to B ′, i.e., every property of a configuration
contained in A obtained by means of the group B furnishes a
property of the corresponding configuration in A′ to be
obtained by the group B ′.
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Equivalent geometries

Definition (Equivalent geometries)

Two geometries (M,G ) and (M ′,G ′) are equivalent iff there exists
a bijection F : M → M ′ and a group isomorphism α : G → G ′

induced by F such that

for all x ∈ M and for all g ∈ G : F (g(x)) = (α(g))(F (x))
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Figure 1: A transfer principle between manifolds M and M ′.
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Indifference to ontology

Klein in §5 titled “On the arbitrariness in the choice of the
space-element”:

As element of the straight line, of the plane, of space, or of
any manifoldness to be investigated, we may use instead of the
point any configuration contained in the manifoldness, - a
group of points, a curve or surface, etc. (...) But so long as we
base our geometrical investigation on the same group of
transformations, the geometrical content [Inhalt der
Geometrie] remains unchanged. That is, every theorem
resulting from one choice of space element will also be a
theorem under any other choice; only the arrangement and
correlation of the theorems will be changed.
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Klein’s ‘methodological structuralism’

A geometry is determined not by “the particular nature of the
elements of the manifold on which it is defined” but by the
structure encoded in its transformation group. (cf. Torretti 1978,
Marquis 2008)

Two geometries defined on different manifolds are structurally
equivalent if there exists a transfer principle between them, i.e. if
they are characterized by the same transformation group (up to
isomorphism).
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Modern axiomatics and modeling



Hilbert’s axiomatics

Hilbert’s Grundlagen der Geometrie (1899):

• Axiom systems implicitly define the primitive terms and can be
interpreted relative to different models.

• Metatheoretic results concerning the consistency of axiom
systems, independence of particular axioms, embeddability
results concerning models of different (sub-)theories.

• These results are presented in a model-theoretic way, i.e. by
the construction of models with the relevant geometrical
properties.
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Hilbert and early model theory

Hilbert’s ‘way of understanding’ the independence results
therefore introduces, and is based on, the distinction
between the axiomatized theory on the one hand and the
various models on the other. (Hallett 2010, p.453)

There is no doubt that Hilbert’s Foundations of Geometry
was one of the main gateways of model-theoretical
thinking into twentieth-century logic and philosophy.
(Hintikka 1988, p.6)
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Question

How did Hilbert understand the method of (re-)interpretation
in his independence/consistency proofs in 1899? Are these
proofs really model-theoretic in character?

⇒ Eder, G. & Schiemer, G. “Hilbert, duality, and the geometrical roots of

model theory”, RSL, (2018)
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Hilbert’s axiomatization of Euclidean geometry

Hilbert presents an axiom system for Euclidean geometry with six
primitive terms: ‘point’, ‘line’, ‘plane’, ‘between’, ‘lies on’,
‘congruence’.

Five groups of axioms:

1. Axioms of connection (the ‘projective basis’ of his system):
Ax 1-2 concern planar geometry, Ax 3-7 solid geometry

2. Axioms of order

3. Axioms of congruence

4. Axiom of parallels

5. Axioms of continuity (Archimedean axiom & axiom of
completeness)
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Two types of interpretations in Grundlagen

1. Hilbert’s C& I proofs are based on different interpretations of
subsystems of Euclidean geometry in field theories (i.e.
Pythagorean, non-Archimedean, complete, etc.): models as
interpretations of geometry in field theory.

2. In algebra of segments, interpretations of field theory into
geometry in order“to enable the use of algebraic methods in
proving geometrical theorems via coordinatization.” (Baldwin
2018)
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Consistency (‘compatibility’) of the AS

The axioms of the five axiom groups given in chapter 1
do not stand in contradiction with each other, i.e. it is no
possible to deduce from them via logical inferences a fact
which contradicts one of the given axioms. To see this, it
suffices to present a geometry in which all axioms of the
five groups are satisfied. (Hilbert 1902, §9)
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A model construction

Hilbert’s proof of the consistency of the plane axioms (without the
axiom of completeness) in §9:

• A set (“Bereich”) Ω of algebraic numbers containing 1 and
closed under operations +,−,×,÷ and

√
1 + x2.

• Points identified with tuples (x , y) of numbers in Ω, lines with
ratios (u : v : w) of numbers in Ω.

• A point (x , y) lies on a line (u : v : w) if ux + vy + w = 0
holds.

Hilbert concludes:

(...) given this, as one can easily see, axioms I 1-3 and IV
are satisfied. (ibid, §9)
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Relative consistency

Hilbert is emphasizing of the relative character of his consistency
and independence proofs:

Any contradiction in the consequences from our axioms
I-IV, V 1 would thus also have to be recognisable in the
arithmetic of the domain Ω.

Thus, what’s important for Hilbert is “the relationship between
mathematical theories” (Hallett 2010). His consistency and
independence proofs are dependent on a background theory
based on which the geometrical models are constructed.
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Hilbert ”Über den Zahlbegriff” (1900)

• Hilbert’s background or “base” theory for the metatheoretic
study of his geometrical AS is the theory of complete ordered
fields specified in Hilbert 1900a (“Über den Zahlbegriff”).

• Primitive terms: Zahl, +,×, <, 1 (neutral element); the axiom
system consists of
(i) Axioms of connection
(ii) Axioms of calculation
(iii) Axioms of order
(iv) Axioms of continuity (Archimedean, Completeness).
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An explication of Hilbert’s method of interpretation

Definition
A translation f of LS in LT consists of LT -formulas
δ(x), ϕRi

(x1, ...xn) (for all primitive predicates R1, ...Rk of LS),
such that

1. Ri (x1, ...xn)f = ϕRi
(x1, ...xn)

2. (x = y)f = (x = y)

3. (¬ϕ)f = ¬ϕf

4. (ϕ ∧ ψ)f = ϕf ∧ ψf

5. (∀xϕ)f = ∀x(δ(x)→ ϕf )

36



Interpretability

Definition
f is an interpretation of S in T iff.

1. f is a translation of LS in LT

2. For every LS -sentence ϕ: if S ` ϕ, then T ` ϕf

Definition
S is interpretable in T iff. there is a interpretation of S in T .
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Reconstructing Hilbert’s proof

Hilbert’s proofs of relative consistency can be made precise by
means of the notion of interpretability between theories.

Hilbert’s “model construction” can be understood in terms of a
translation of the language of Euclidean planes into the language of
Pythagorean fields.

It is then shown that this translation preserves theoremhood, i.e.
any translation of a Euclidean theorem is provable from the theory
of Pythagorean fields.

see, e.g., Baldwin (2018)
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Hilbert & Bernays on the“method of arithmetization”

Hilbert & Bernays, Grundlagen der Mathematik, Vol 1 (1934):

With respect to the previous discussion of this problem [the
consistency of an AS], this is addressed both in geometry and
in the physical sciences through the method of arithmetization:

One represents the objects of a theory by numbers and number
systems and the primitive relations by equations and
disequations such that the axioms of the theory are
transformed either in arithmetical identities or in provable
sentences on the basis of these translations, as is the case in
geometry. (...)

In this procedure arithmetic, i.e. the theory of real numbers
(analysis) is presupposed as valid. (p.3)
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Summary: structuralism and model theory

The development of structuralism is often identified with
emergence of model theory, more precisely, a model theoretic
conception of theories (e.g. Scanlan 1988, Shapiro 1997)

However, the crucial model-theoretic notion in nineteenth-century
geometry (including Hilbert) is not the interpretation of a theory in
structures but the interpretation between theories.

Interpretations in the latter sense present a method to encode one
theory in another theory, thus showing their shared structure.
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The Roots of Mathematical Structuralism

ERC Starting Grant Project “The Roots of Mathematical
Structuralism“, University of Vienna, 2017-2022

https://structuralism.phl.univie.ac.at
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