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MAD number

M a set, A ⊆ E ⊆ P(M)

A is an almost disjoint family, shortly AD family, if |A ∩B| < ω for each A,B ∈ A.

A is maximal almost disjoint family of E , shortly a MAD family of E , if A is maximal AD
family below E with respect to inclusion.

Definition
a is the minimal size of a MAD family of subsets of a countable set.

The family of sets {f � i : i ∈ ω} for all sequences f ∈ ω2 is an AD family of size c.

It can be extended to a MAD family of subsets of 2<ω .
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Tree MAD number

Definition
aT is the minimal size of a MAD family of subtrees of 2<ω .



Compact partitions of ωω

aT is the minimal size of a partition of ωω into compact sets.

d ≤ aT ≤ c
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aT is really (topologically) invariant

Theorem (A. Miller 1980, O. Spinas 1997)
LetX be an uncountable Polish space. aT is the minimal size of an uncountable partition
of X into closed sets.



Some history

J. Stern 1977, K. Kunen

I aT = ω1 in the random real model (i = u = r = cov(M) = c)

A. Miller 1980

I aT is invariant

I it is consistent that aT = ω2 and cov(M) = ω1

L. Newelski 1987

I d ≤ aT

I aT = ω1 in the Sacks model

O. Spinas 1997

I d ≤ aT , aT is invariant

I it is consistent that aT = ω2 and cof(N ) = ω1
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Some history

M. Hrušák 2000

I notation aT

I d, ra ≤ aT , where ra is the minimal size of AD family without certain Ramsey-like
properties

J.T. Moore, M. Hrušák, M. Džamonja 2004

I if ♦d holds then aT = ω1 (also a = ω1, M. Hrušák 2001)

K. Ciesielski, J. Pawlikowski 2004

I aT = ω1 is the consequence (C7) of Covering Property Axiom

O. Guzmán, M. Hrušák, O. Téllez 2020

I it is consistent that aT = ω2 and cof(N ) = a = ω1
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O. Guzmán, M. Hrušák, O. Téllez 2020

I it is consistent that aT = ω2 and cof(N ) = a = ω1



Some history
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Cardinal invariants of the continuum



Main result

Theorem (V. Fischer–J.Š.)
There is a cardinals preserving generic extension in which

cof(N ) = a = u = i = ω1 < aT = ω2.



Question
Is any of the inequalities a ≤ aT or non(N ) ≤ aT provable in ZFC?



Proof of the main result.



The plan

(1) The overall model.

(2) Partition forcing.

(3) Fusion arguments.

(4) Indestructibility - ultrafilter base.

(5) Indestructibility - independent family.



The overall model.

I V is the ground model with V � ZFC+CH.

I Countable support iteration 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 of posets.

I Qα destroys a partition of 2ω.

I Bookkeeping device such that V Pω2 � aT = ω2.

I There is Pω2
-indestructible independent family in V , so V Pω2 � i = ω1.

I There is Pω2
-indestructible ultrafilter in V , therefore V Pω2 � u = ω1.

I There is Pω2
-indestructible MAD family in V , so V Pω2 � a = ω1

(O. Guzmán, M. Hrušák, O. Téllez 2020).

I Pω2
has Sacks property, therefore cof(N ) = ω1 (O. Spinas 1997).
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(1) The overall model.

(2) Partition forcing.

(3) Fusion arguments.

(4) Indestructibility - ultrafilter base.

(5) Indestructibility - independent family.



Partition forcing

Definition (A. Miller 1980, partition forcing)
Let C = {Cα}α∈ω1 be an uncountable partition of 2ω into closed sets.

(1) Q(C) is the set of perfect trees p ⊆ 2<ω such that each Cα is nowhere dense in [p].

(2) The order of Q(C) is inclusion.

Let us recall that a set A which is contained in [p] for some perfect subtree p of 2<ω is
nowhere dense in [p] if for every s ∈ p there is t ∈ p extending s and

{f ∈ [p] : t ⊆ f} ∩A = ∅.



Some history on partition forcing

A. Miller 1980

I The poset Q(C) is proper.

I Q(C) has the Laver property.

I In the Q(C)-generic extension, C is no longer a partition of 2ω .

O. Spinas 1997

I Q(C) has the ωω-bounding property.

I Q(C) has the Sacks property.

J. Zapletal 2008

I Q(C) is isomorphic to a dense subset of PI (I a σ-ideal on 2ω generated by C, PI
are I-positive Borel subsets of 2ω ordered by inclusion).

O. Guzmán, M. Hrušák, O. Téllez 2020

I Q(C) strongly preserves the tightness of a tight MAD family.
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O. Guzmán, M. Hrušák, O. Téllez 2020

I Q(C) strongly preserves the tightness of a tight MAD family.



Some history on partition forcing

A. Miller 1980

I The poset Q(C) is proper.

I Q(C) has the Laver property.

I In the Q(C)-generic extension, C is no longer a partition of 2ω .

O. Spinas 1997

I Q(C) has the ωω-bounding property.

I Q(C) has the Sacks property.

J. Zapletal 2008

I Q(C) is isomorphic to a dense subset of PI (I a σ-ideal on 2ω generated by C, PI
are I-positive Borel subsets of 2ω ordered by inclusion).
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Some history on partition forcing

L.J. Halbeisen 2012, Notes in the Chapter on Miller forcing:



(1) The overall model.

(2) Partition forcing.

(3) Fusion arguments.

(4) Indestructibility - ultrafilter base.

(5) Indestructibility - independent family.



Fusion arguments

Lemma
Let ḟ be a Q(C)-name for a function in ωω. The set of all conditions q satisfying the fol-
lowing property is dense in Q(C):

For all m ∈ ω, for all t ∈ splitm(q) there is ft ∈ m+1ω such that

q(t)  ḟ � (m+ 1) = f̌t.



Q(C) is ωω-bounding
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Let ḟ be a Q(C)-name for a function in ωω. The set of all conditions q satisfying the fol-
lowing property is dense in Q(C):

For all m ∈ ω, for all t ∈ splitm(q) there is ft ∈ m+1ω such that

q(t)  ḟ � (m+ 1) = f̌t.

Corollary (O. Spinas 1997)
The poset Q(C) is ωω-bounding.

Proof.
I ḟ a Q(C)-name for a function in ωω, p ∈ Q(C).

I There is q ≤ p such that for all m ∈ ω, for all t ∈ splitm(q) there is ft ∈ m+1ω with
q(t)  ḟ � (m+ 1) = f̌t.

I g(n) = max{fs(n) + 1: s ∈ splitn(q)}.

I The set {q(s) : s ∈ splitn(q)} is pre-dense in q.

I q  ∀n(ḟ(n) < g(n)).
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I ḟ a Q(C)-name for a function in ωω, p ∈ Q(C).

I There is q ≤ p such that for all m ∈ ω, for all t ∈ splitm(q) there is ft ∈ m+1ω with
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I ḟ a Q(C)-name for a function in ωω, p ∈ Q(C).

I There is q ≤ p such that for all m ∈ ω, for all t ∈ splitm(q) there is ft ∈ m+1ω with
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q(t)  ḟ � (m+ 1) = f̌t.

Corollary (O. Spinas 1997)
The poset Q(C) is ωω-bounding.

Proof.
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Fusion arguments used before

Definition (A. Miller 1980)
Let p, q be conditions in Q(C). Then p ≤n q if and only if

(1) p ≤ q and splitn(p) = splitn(q),

(2) for all t ∈ splitn(q) the left most branch xqt of q through t belongs to [p],

(3) for each t ∈ splitn(q) if xqt ∈ Cα then there is s ⊇ t such that s ∈ splitn+1(p)
such that [p(s)] ∩ Cα = ∅.

If pn+1 ≤n pn for each n then the
⋂
{pn : n ∈ ω} is a fusion of {pn}n∈ω .



Fusion arguments used before

Definition (O. Spinas 1997, O. Guzmán, M. Hrušák, O. Téllez 2020)
A family of reals X = {xs : s ∈ ω<ω} is said to be nice if the following conditions hold:

(1) for every s ∈ ω<ω the sequence 〈xsan〉n∈ω has the property that ∆(xs, xsan) <
∆(xs, xsa(n+1)),

(2) for every s, t, z ∈ ω<ω if s ⊆ t ⊆ z then ∆(xs, xz) < ∆(xt, xz), and

(3) if for every s ∈ ω<ω , αs ∈ ω1 is such that xs ∈ Cαs then whenever s ⊆ t then
αs 6= αt.

If p is a Sacks tree and there is a family X ⊆ [p] which is nice with respect to C and
dense in [p], then p ∈ Q(C).



Our fusion arguments

We say that x, y ∈ ω2 are C-different if x, y belong to different elements of C.

A tree p ⊆ 2<ω is said to be C-branching if for any s ∈ p there are C-different branches
in [p] extending s.



Our fusion arguments

We say that x, y ∈ ω2 are C-different if x, y belong to different elements of C.

A tree p ⊆ 2<ω is said to be C-branching if for any s ∈ p there are C-different branches
in [p] extending s.

Lemma
Let p ⊆ 2<ω be a tree. The following are equivalent:

(a) p ∈ Q(C).

(b) p is C-branching.

(c) p is perfect and [p] contains a countable dense subset with C-different branches.



Our fusion arguments
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Proof

I ḟ a Q(C)-name for a function in ωω, p ∈ Q(C).

I Build a fusion sequence {(qn, Xn)}n∈ω with q0 ≤ p such that its fusion q has
the required property.
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One branch
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For each function h in ωω∩V , the set of all conditions r satisfying the following property
is dense below p:

There is a real x ∈ [r] and a sequence {fs}s∈x�split(r) of functions in <ωω such that
r(s)  ḟ � h(n) = fs for any s = x � splitn(r).

Proof.
I Construct a decreasing sequence {ri}i∈ω of extensions of a condition below p with

strictly increasing stems such that rn  ḟ � h(n) = fn for some fn ∈ h(n)ω.

I Denote sn = stem rn and set x =
⋃
i∈ω si.

I Take the amalgamation r =
⋃
i∈ω ri(s

a
i 〈1− x(|si|)〉).
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i = x(|s|).

I Otherwise take t ⊇ sa〈1− i〉 such that [qn(t)] avoids all already considered sets in C.

I Apply previous observation to obtain condition q(s, 1 − i) ≤ qn(t), branch x and se-
quence {fs}s∈x�split(qn).

I Amalgamate qn+1 =
⋃
{q(s, i) : s ∈ splitn(qn), i ∈ {0, 1}}.

I Xn+1 is the set of all considered branches in this step.
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(1) The overall model.

(2) Partition forcing.

(3) Fusion arguments.

(4) Indestructibility - ultrafilter base.

(5) Indestructibility - independent family.



Indestructibility - ultrafilter base

Theorem
The forcing notion Q(C) preserves P-points and Ramsey ultrafilters.

Proof.
I Q(C) preserves P-points and is ωω-bounding - Q(C) preserves Ramsey ultrafilters.

I U a P-point in V , p  Ẏ ⊆ ω.

I For all t ∈ splitm(p) there is ut ∈ m+12 such that p(t)  Ẏ � (m+ 1) = ǔt.

I {xt : t ∈ p} ⊆ [p] a dense set in [p] containing C-different elements (enumerated
such that s ⊆ xs, and if s ⊆ t ⊆ xs then xt = xs).

I Yt =
⋃
{us : s ⊆ xt}.

I {Ys : s ∈ p} ⊆ U or {ω \ Ys : s ∈ p} ⊆ U .

I There is a pseudointersection Z ∈ U of one of the above sets.

I Fusion argument: q0, q1 ≤ p, and a partition of Z into two sets Z0, Z1 such that
q0  Ž0 ⊆ Ẏ and q1  Ž1 ⊆ Ẏ . Similarly for the second case.

I V Q(C) � P(ω) = 〈U〉up ∪ 〈U∗〉dn.
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q0  Ž0 ⊆ Ẏ and q1  Ž1 ⊆ Ẏ . Similarly for the second case.

I V Q(C) � P(ω) = 〈U〉up ∪ 〈U∗〉dn.



Indestructibility - ultrafilter base

Theorem
The forcing notion Q(C) preserves P-points and Ramsey ultrafilters.

Proof.
I Q(C) preserves P-points and is ωω-bounding - Q(C) preserves Ramsey ultrafilters.

I U a P-point in V , p  Ẏ ⊆ ω.
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I {xt : t ∈ p} ⊆ [p] a dense set in [p] containing C-different elements (enumerated
such that s ⊆ xs, and if s ⊆ t ⊆ xs then xt = xs).

I Yt =
⋃
{us : s ⊆ xt}.

I {Ys : s ∈ p} ⊆ U or {ω \ Ys : s ∈ p} ⊆ U .

I There is a pseudointersection Z ∈ U of one of the above sets.

I Fusion argument: q0, q1 ≤ p, and a partition of Z into two sets Z0, Z1 such that
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q0  Ž0 ⊆ Ẏ and q1  Ž1 ⊆ Ẏ . Similarly for the second case.

I V Q(C) � P(ω) = 〈U〉up ∪ 〈U∗〉dn.



Indestructibility - ultrafilter base

Theorem
The forcing notion Q(C) preserves P-points and Ramsey ultrafilters.

Proof.
I Q(C) preserves P-points and is ωω-bounding - Q(C) preserves Ramsey ultrafilters.

I U a P-point in V , p  Ẏ ⊆ ω.
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Indestructibility - independent family

The concept developed by S. Shelah 1992, D. Chodounský, V. Fischer, H. Grebı́k 2019,
V. Fischer, D.C. Montoya 2019.

A ⊆ P(ω) Ah =
⋂
{Ah(A) : A ∈ domh} for h ∈ FF(A)

A is an independent family if Ah is infinite for each h ∈ FF(A).

The cardinal invariant i is the minimal cardinality of a maximal independent family.

A is selective independent family if

(1) A is an independent family,

(2) A is densely maximal,

(3) fil(A) is Ramsey.
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Preservation Theorems

Lemma (S. Shelah 1992, D. Chodounský, V. Fischer, H. Grebı́k 2019)
Let A ∈ V be an independent family and let P ∈ V have Sacks property. Then the filter
fil(A)V

P
is generated by fil(A) ∩ V . That is, fil(A)V

P
= 〈fil(A) ∩ V 〉up.

Theorem (S. Shelah 1992)
(CH) Let 〈Pα, Q̇β : α ≤ δ, β < δ〉 be a countable support iteration of proper ωω-
bounding posets. Let F ⊆ P(ω) be a Ramsey set and let H ⊆ P(ω)\〈F〉up. Suppose
for each α < δ, V Pα � P(ω) = 〈F〉up ∪ 〈H〉dn. Then, the same property holds at δ, i.e.

V Pδ � P(ω) = 〈F〉up ∪ 〈H〉dn.

Corollary
(CH) Let 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 be a countable support iteration of proper posets
which preserve selective independent families and possess Sacks property. If A is
a selective independent family then (A is a selective independent family)V

Pα .
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Indestructibility - independent family

Theorem (V. Fischer–J.Š.)
The forcing notion Q(C) preserves selective independent families. That is, if A is a se-
lective independent family then (A is a selective independent family)V

Q(C)
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Proof

I Let A be a selective independent family.

I It is enough to show V Q(C) � A is densely maximal.

I In V Q(C), take any Y ∈ P(ω)\〈fil(A) ∩ V 〉up.

I To the contradiction, suppose Y /∈ 〈{ω\Ah : h ∈ FF(A)}〉dn.

I Thus we can fix p ∈ Q(C) and a Q(C)-name Ẏ for Y such that for all h ∈ FF(A),

p  |Ẏ ∩ Ah| =∞.

I We assume that for all m ∈ ω, for all t ∈ splitm(p) there is ut ∈ m+12 such that

p(t)  Ẏ � (m+ 1) = ǔt.

I For each t ∈ p, let Yt = {m ∈ ω : p(t) 6 m̌ /∈ Ẏ }.
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Proof

I Let A be a selective independent family.

I It is enough to show V Q(C) � A is densely maximal.

I In V Q(C), take any Y ∈ P(ω)\〈fil(A) ∩ V 〉up.

I To the contradiction, suppose Y /∈ 〈{ω\Ah : h ∈ FF(A)}〉dn.

I Thus we can fix p ∈ Q(C) and a Q(C)-name Ẏ for Y such that for all h ∈ FF(A),

p  |Ẏ ∩ Ah| =∞.

I We assume that for all m ∈ ω, for all t ∈ splitm(p) there is ut ∈ m+12 such that
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Outer hull
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Claim
We can assume there is a dense set {xs : s ∈ p} ⊆ [p] with C-different elements and
the family {ys : s ∈ p} of sets in fil(A) ∩ V such that:

(1) xs extends s and if s ⊆ t ⊆ xs then xt = xs.

(2) If t = xs � splitn(p) then p(t)  ys(n) ∈ Ẏ .



Lemma
Let F be a filter. The following are equivalent:

(a) F is a Ramsey filter.

(b) For any sequence {Fi}i∈ω in F there is a ∈ F such that

a(n+ 1) ∈ Fa(n).

(c) For any sequence {Gi}i∈ω of finite subsets of F there is a ∈ F such that

a(n+ 1) ∈
⋂
Ga(n).
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Proof.
I There is a ∈ fil(A) ∩ V such that a(n+ 1) ∈

⋂
{Yt : t ∈ split≤a(n)+2(p)}.

I For each x ∈ [p], we set i(x) = {i : p(t)  ǎ(i+1) ∈ Ẏ for t = x � splita(i+1)(p)}.

I We say that x ∈ [p] is acceptable branch if i(x) is cofinite.

I One of properties of Yt’s: There are acceptable branches extending each s ∈ p.

I For each acceptable branch x, yx = {a(i+ 1): i ∈ i(x)} ∈ fil(A) ∩ V .

I Proceed with fusion argument, and use exclusively acceptable branches to build
a dense set of a subtree of p.
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Proof

I yt ∈ fil(A) ∩ V for each t ∈ split(p).

I There is C = {l(n) : n ∈ ω} ∈ fil(A) such that

l(n+ 1) ∈
⋂
{yt : t ∈ split≤l(n)+2(p)}.

I Construct a condition q ≤ p such that q  Č ⊆ Ẏ .

I Then q  Ẏ ∈ fil(A) which is a contradiction.
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Other work

Theorem (J.A. Cruz-Chapital–V. Fischer–O. Guzmán–J.Š.)
It is relatively consistent that

cof(N ) = i = a = ω1 < aT = u = ω2.
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