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The cardinal invariants of the continuum are uncountable cardinals whose

size is at most the cardinality of the real numbers. We are mostly

interested in cardinals with a nice topological or combinatorial definition.
@ By w we denote the set (cardinal) of the natural numbers.

@ By ¢ we denote the cardinality of the real numbers.

Osvaldo Guzmdn (Centro de Ciencias MatemMAD families and strategically bounding forci



© The cardinal invariants of the continuum are cardinals j such that:

w<j<c

@ The Continuum Hypothesis (CH) is the following statement:

¢ is the first uncountable cardinal

@ All cardinal invariants are ¢ under CH.

Q Martin’s Axiom (MA) implies that most cardinal invariants are c.
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The point is that the value of ¢ does not determine many of the
combinatorial and topological properties of the “reals”
(p(w),2¥ w® R...). Let's look at two models where ¢ = ws.
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The Sacks model

There is a non-meager
set of size wy

There is a non-null
set of size wq

w® can be covered with
w1-many meager sets

R can be covered with
wi-many null sets

A model of PFA

Every set of size w;
is meager

Every set of size w;
has measure zero

Union of wi-many
meager sets is meager

Union of wi-many
null sets has measure
zero
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In both models we have that ¢ = w,, however, the structure and
properties of the reals are very different in those models. The value of the
cardinal invariants in a model provide us a lot of information regarding the
reals in such model.

Many of the cardinal invariants can be seen as the first moment where a
“diagonalization argument fails”. With this knowledge, we can carry some
of the previous known constructions using CH to a different model.
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Let f, g € w®, define f <* g if and only if f (n) < g (n) holds for all

n € w except finitely many. We say a family B C w® is unbounded if B is
unbounded with respect to <* . We say that D C w® is dominating if for
every f € w®, there is g € D such that f <* g.

Definition
The bounding number b is the size of the smallest unbounded family.

Definition

The dominating number 0 is the size of the smallest of a dominating

family.

Clearly, we have that b < 0.
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b is uncountable.

We need to show that every countable subset of w® is bounded. Let
B={f,| n€w}, define g € w*” given by g (n) =1fy (n)+ ..+ f(n). It
is easy to see that g bounds B. O

Obviously, the whole w® is unbounded, so we get:

w<b<ec
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Definition

An infinite family A C [w]® is almost disjoint (AD) if the intersection of
any two different elements of A is finite. A MAD family is a maximal
almost disjoint family.

Note that MAD families exists under the Axiom of Choice (in fact, every
AD family can be extended to a MAD family). There are models of ZF
where there is no MADness.
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Definition

The almost disjointness number a is the smallest size of a MAD family.
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a is an uncountable cardinal. \

We need to prove that there are no countable MAD families. Let

A= {A, | n€ w} bean AD family. For every n € w, we choose

b, € Ay \ UA;. Let B={b, | n € w}, it follows that B is almost
i<n

disjoint with every element of A.
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What is the relationship between a, b and 97
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What is the relationship between a, b and 07

@ We already know that b < 0.
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What is the relationship between a, b and 07

@ We already know that b <.
@ It is not hard to prove that b < a.
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In fact, we can think of a as the “AD-version of b".

Given n € w, define C, = {n} x w.
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b is the smallest size of a family B C w X w with the following properties:

@ Every element of B is almost disjoint with every C,,.

@ For every X € [w]“ and f : X — w, there is B € B such that BN f
is infinite (we view f as a subset of w x w).
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b is the smallest size of a family B C w X w with the following properties:

@ Every element of B is almost disjoint with every C,.

Q For every X € [w]” and f : X — w, there is B € B such that BN f
is infinite (we view f as a subset of w X w).

a is the smallest size of a family A C w X w with the following properties:

@ Every element of A is almost disjoint with every C,.

@ For every X € [w]” and f : X — w, there is A € A such that AN f
is infinite.

@ A is an AD family.
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a is the smallest size of a family A C w X w with the following
properties:
@ Every element of A is almost disjoint with every C,.
Q For every X € [w]” and f : X — w, there is A € A such that AN f
is infinite.
@ Ais an AD family.
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What about a and 0?
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Theorem (Kunen?)

There is a model in ZFC in which a < 0. In fact, such inequality holds in
the Cohen model.
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Is it consistent that 0 < a?
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Is it consistent that 0 < a?

Yes! But it is MUCH harder.
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In order to build a model of 0 < a, Shelah developed the techniques of
forcing along a template.

Theorem (Shelah)
Assume GCH. Let x and u be regular cardinals with w1 < x < u. There is
a ccc extension in whichb =0 =x anda = ¢ = .

In particular, we get the following:

Theorem (Shelah)
There is a model of ZFC in which wy =0 < a = ws.
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The theorem of Shelah has an interesting feature, 0 can be any regular
cardinal except wi. The natural question is the following:
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Problem (Roitman)

Does 0 = wy imply a = wy 7
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Problem (Roitman)

Does 0 = wy imply a = w; 7

It would be weird if 0 = w; implied a = w; (given that this is not true for
any other regular cardinal)... but w; is weird cardinal, it simply behaves
differently than the other regular cardinals. Every time | become more
convinced that a technique of Todorcevic could be using to build a small
MAD family from a small dominating family.
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Are there known examples of this phenomenon?

Are there two cardinal invariants j; and j, such that j» < j; is consistent,
yet jo = wy imply j1 = w1?
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Are there known examples of this phenomenon?

Are there two cardinal invariants j; and j» such that j» < j; is consistent,
yet jo = wy imply j1 = w1?

Yes! We will see an example.
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as is the smallest size of a family A C w x w with the following properties:

@ Every element of A is an infinite partial function from w to w.

@ For every X € [w]” and f: X — w, there is g € A such that g N f
is infinite.

@ Ais an AD family.

By non(M) we denote the smallest size of non-meager subset of w®.
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@ max{non(M),a} <a..
@ (Brendle) It is consistent that wp = max{non(M),a} < a,.
Q (G., Hrusak, Téllez) max{non(M),a} = w; implies a5 = w;.

In this way, max{non(M),a} and as may be different, but not if
max{non(M), a} is w;.
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The problem of Roitman is probably equivalent to the following:

Problem

Assume CH. Let A be a MAD family. Is there a proper w®“-bounding
forcing that destroys A?
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The problem of Roitman might be equivalent to the following:

Problem

Assume CH. Let A be a MAD family. Is there a proper w®“-bounding
forcing that destroys A?

@ A forcing is w®“-bounding it it does not add unbounded reals (i.e.
w® NV is still a dominating family after forcing with IP).

@ A forcing IP destroys a MAD family A if A is no longer maximal after
forcing with IP.

@ If IP does not destroy A, we say that A is P-indestructible.
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The problem of Roitman is probably equivalent to the following:

Assume CH. Let A be a MAD family. Is there a proper w*-bounding
forcing that destroys A?

If the answer to the problem is
yielding a model of w; =0 < a.

yes", we can perform a forcing iteration
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Theorem (Shelah)

The countable support iteration of proper w*-bounding forcings is
w®-bounding.
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Problem

Assume CH. Is there a MAD family that is indestructible under any proper
w®-bounding forcing?

There has been many advances in this problem (suggesting a positive
answer?).
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Theorem (Garcia-Ferreira, Hrusak)

Assume V |= CH. Let P be proper w®“-bounding forcing of size wy. There
is a IP-indestructible MAD family.

In this way, no proper w“-bounding forcing of size wi can take care of all
MAD families.
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Theorem (DZamonja, Hrusdk, Moore)

Let (IPy)y<w, be a sequence of Borel partial orders such that each P, is of
the form o (2)" x Q, for some Q,. Let IP be the countable support
iteration of the sequence. If P is proper and w*“-bounding, then ‘a = w;”
holds after forcing with IP.

In some sense, the theorem above says that in order to get a model of
b < a, we need to use non-definable forcings.
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Theorem (Laflamme)

If a MAD family can be extended to an F,-ideal, then it can be destroyed
by a proper w“-bounding forcing. However, under CH there are MAD
families that can not be extended to an F,-ideal.
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Definition

Let A be an AD family. By Z(.A) we denote the ideal generated by A
(and all finite subsets of w).
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Definition
Let A be a MAD family. We say that A is Shelah-Steprans if for every
X C [w]~\ {D}, there is B € T (A) such that one of the following

conditions hold:

Q@ BNs #Q forevery s € X, or
@ B contains infinitely many elements of X.

Shelah-Steprans MAD families have very strong combinatorial properties.

Osvaldo Guzmdn (Centro de Ciencias MatemMAD families and strategically bounding forci



Theorem (Raghavan)

It is consistent that there are no Shelah-Steprans MAD families.

On the other hand,

Theorem (Brendle,G., Hru$dk, Raghavan)

Both p = ¢ and {(b) imply that there are Shelah-Steprans MAD families.
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We discovered that Shelah-Steprans MAD families are very indestructible.
It might be the case that Shelah-Steprans MAD families are indestructible
by every proper w®-bounding forcings.
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Theorem (Brendle, G., Hrusak, Raghavan)

(LC) Let A be a Shelah-Steprans MAD family and J a “definable” o-ideal
in w® such that P ;7 = Borel (w*) /J is proper and has the continuos
reading of names. If P 7 destroys A, then it adds a dominating real.
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Let IP be a partial order and p € IP. We define the bounding game
BG (P, p) as follows:

I | Do D;
I B, B:

Where each D, C IP is open dense below p and B, € [D,]~“ . Player II
will win the game if there is g < p such that B, is predense below g for
every n € w (i.e. if every r < g is compatible with an element of B,).
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Theorem (Zapletal)

Let P be a proper forcing. The following are equivalent:
Q P js w¥-bounding.

@ For every p € P, the player | does not have a winning strategy on
BG (P, p) .

This result can be used as motivation for the following definition:
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Definition

Let IP be a partial order. IP is strategically bounding if for every p € P,
the player Il has a winning strategy on BG (IP, p) .
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Definition

Let IP be a partial order. IP is strategically bounding if for every p € P,
the player Il has a winning strategy on BG (IP, p) .

Examples of strategically bounding forcings are the Sacks, Silver and
random forcings. In fact, the usual proofs that these forcings are
w“-bounding actually show that they are strategically bounding.
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Strategically bounding forcings have been studied in the past. In
particular, the ccc case has received a lot of attention because of its
relation with Maharam's and von Neumann's problems. The following is a
very important result of Fremlin:

Theorem (Fremlin)

Let B be a ccc complete Boolean algebra. the following are equivalent:

© B is strategically bounding.

@ There is a continuous submeasure on the algebra B.

Osvaldo Guzmdn (Centro de Ciencias MatemMAD families and strategically bounding forci



Some strategically bounding forcings are of the following form:
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Definition

Let IP be a partial order. We say that IP is axiom A for ® (or has an axiom
A structure for 0) if there is a sequence of partial orders (<), ., with the
following properties:

Q@ If p<pqgthen p<gq.
Q If p<,11 qthen p <, g forevery n € w.

© (Fusion property) If (pp),c,, is a sequence such that p,1 <, p, for
every n € w, then there is g € IP such that g <, p, for every n € w.

Q (Bounding Freezing property) For every p € P, A C IP a maximal
antichain and n € w, there is ¢ <, p such that {r € A| r and g are
compatible} is finite.
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Theorem (G., Hrugak)

The countable support iteration of proper strategically bounding forcings is
strategically bounding.
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Theorem (G., Hrudak)

If A is a Shelah-Steprans MAD family and P a strategically bounding
forcing, then A is IP-indestructible.
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Thank you very much!
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