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Overview

We study the preservation of levels of projective determinacy and
regularity properties under iterations of ‘simply’ definable forcing
notions.

This is done by using a technique called capturing.

All the well-known tree forcings are ‘simply’ definable, hence our
results are applicable to the study of cardinal characteristics.

The results are from a joint project with Jonathan Schilhan and
Philipp Schlicht.

This project is a sequel to the paper ‘Preserving levels of projective
determinacy by tree forcings’ by F. Castiblanco and P. Schlicht.
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Preserving ‘Every real has a sharp’
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Sharps

Definition

0] exists iff each (at least one) of the following objects exist:

1 An uncountable set of ordinals which are order-indiscernible over L.

2 A non-trivial, elementary embedding j : L→ L.

3 A well-founded, remarkable Ehrenfeucht-Mostowski type.
4 A countable structure (Lα,∈,U) such that

(Lα,∈) is a model of ZFC− with a largest cardinal κ,
(Lα,∈,U) is a model of Σ0-separation,
U is a <κ-complete ultrafilter on P(κ)Lα and
all iterated ultrapowers of (Lα,∈,U) are wellfounded.

More generally, x] is defined for any real x ∈ ωω by replacing L with L[x ].

The existence of x] follows from the existence of a measurable cardinal.

We say that ’Every real has a sharp’ iff ∀x ∈ ωω : x] exists.
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Preserving Large Cardinals

The following large cardinal preservation theorem is well known:

Theorem (Laver)

Let κ be supercompact and let V be suitably prepared. Then the
supercompactness of κ is indestructible by any <κ-directed closed forcing
notion.

Maybe less known:

Theorem (Johnstone)

Let κ be strongly unfoldable and let V be suitably prepared. Then the
strong unfoldability of κ is indestructible by any <κ-closed, κ+-c.c.
(κ-proper) forcing notion.

Question: What are other examples of large cardinals where such an
‘exact’ preservation can be shown for a larger class of forcing notions?
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Determinacy

Let A be a subset of 2ω. In the game G (A), two players play ni ∈ {0, 1}
in turn. Player I wins iff ~n = 〈ni | i ∈ ω〉 ∈ A.

Table: G(A)

Round 0 Round 1
Player I n0 n2
Player II n1 n3

We call A determined iff one of the players has a winning strategy in the
game G (A). We say that Π1

1-determinacy holds iff every (co-)analytic set
is determined.

Theorem (Harrington (1978), Martin (1970))

The following statements are equivalent:

Π1
1-determinacy holds.

Every real has a sharp.
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Capturing

But how can the statement ‘Every real has a sharp’ be preserved?

The answer lies in the technique of capturing:

Definition

Let P be a forcing notion. We say that P is captured iff

∀p ∈ P ∀ P-names τ̇ for a real ∀y ∈ ωω∃z ∈ ωω ∃Q ∈ L[y , z ] ∃q ≤P p :

q 
P ∃H : H is (L[y , z ],Q)-generic ∧ τ̇ ∈ L[y , z ][H]

Johannes Philipp Schürz Preserving levels of projective determinacy and regularity properties



Preserving ‘Every real has a sharp’

Theorem

Assume that V � ’Every real has a sharp’ and let P be a forcing notion.
If P is captured, then V P � ’Every real has a sharp’.

Proof.

Working in V let p ∈ P and τ̇ a P-name for a real be arbitrary. Since P is
captured, there now exist q ≤P p, z ∈ ωω and Q ∈ L[z ] such that
q 
P ∃H : H is (L[z ],Q)-generic ∧ τ̇ ∈ L[z ][H].
Since z] exists, there is a non-trivial, elementary embedding
j : L[z ]→ L[z ] with crit(j) > |Q|. Hence, j can be lifted to
j∗ : L[z ]Q → L[z ]Q, and we can conclude that q 
P ∃H ∃j∗ : τ̇ ∈ L[z ][H]∧
j∗ : L[z ][H]→ L[z ][H] is a non-trivial, elementary embedding.
In particular, q 
P ∃j̃ j̃ : L[τ̇ ]→ L[τ̇ ] is a non-trivial, elementary
embedding, hence q 
P τ̇

] exists.
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Variants of Capturing 1

The following is a strengthening of capturing:

Definition

Let P and Q be forcing notions and such that Q is definable. We say
that Q captures P iff

∀p ∈ P ∀ P-names τ̇ for a real ∀y ∈ ωω ∃z ∈ ωω ∃q ≤P p :

q 
P ∃H : H is (L[y , z ],QL[y ,z])-generic ∧ τ̇ ∈ L[y , z ][H]
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Variants of Capturing 2

The following is a strengthening of Q captures P:

Definition

Let P and Q be forcing notions and such that Q is definable. We say
that Q uniformly captures P iff

∀p ∈ P ∀ P-names τ̇ for a real ∃z ∈ ω ∃ P-name Ḣ ∀y ∈ ωω ∃q ≤P p :

q 
P Ḣ is (L[y , z ],QL[y ,z])-generic ∧ τ̇ ∈ L[z ][Ḣ]
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Examples

Lemma (Castiblanco - Schlicht)

If ω1 is inaccessible to the reals, then:

Cohen forcing uniformly captures Sacks and Silver forcing.

Mathias forcing uniformly captures Laver, Mathias and Miller
forcing.

Lemma

If BP(∆1
2) holds, then Cohen forcing uniformly captures Sacks and Silver

forcing.

Lemma

If BP(Σ1
2) holds, then Cohen forcing uniformly captures Miller forcing.

Lemma (Schilhan)

Let P be a countable support iteration of Sacks or Silver forcing. If
BP(∆1

2) holds, then P is captured.
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Suslin Forcing

We will need the following definitions:

Definition

Let P = (dom(P),≤P) be a forcing notion such that dom(P) ⊆ ωω. We
say that P is Suslin iff dom(P) and ≤P have Σ1

1 definitions.
We say that P is strongly Suslin iff additionally the incompatibility
relation ⊥P also has a Σ1

1 definition.

and

Definition

Let P be a Suslin forcing. We say that P is proper-for-candidates iff for
every countable, transitive model N containing the real parameters for
the Suslin definitions of dom(P) and ≤P and satisfying ZFC∗, and every
p ∈ PN there exists q ∈ P such that q ≤P p and q is (N,P)-generic.
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Capturing of Iterations

We can now state our main theorem:

Theorem (Sch.-Sch.-Sch.)

Let P = 〈Pα, Ṗβ : α ≤ κ, β < κ〉 be a countable support iteration of

Suslin forcing notions Ṗβ such that for every α < κ we have:


Pα ∀A ∈ [ωω]ω : Ṗα ∈ L[A]⇒ L[A] � Ṗα is proper-for-candidates.

If ω1 is inaccessible to the reals, then P is captured.

Sketch of Proof.

For simplicity let us assume that P is an iteration of Sacks forcing. Let
p ∈ P, τ̇ a P-name for a real and y ∈ ωω be arbitrary. Let (ṡβ)β<κ be a
P-name for the sequence of generic Sacks reals.
Using continuous reading of names we can assume that there exists
ũ ⊆ κ countable and a continuous function f̃ : (2ω)ũ → ωω such that
w.l.o.g. p 
P τ̇ = f̃ ((ṡβ)β∈ũ).
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Capturing of Iterations

Sketch of Proof (Cont.)

Furthermore, we can assume w.l.o.g. that there exists
(uα)α∈supp(p) ⊆ [κ]ω and (fα)α∈supp(p) with fα : (2ω)uα → P(2<ω)
continuous such that ∀α ∈ supp(p) : p � α 
Pα

ṗ(α) = fα((ṡβ)β∈uα).
Set u∗ := ũ ∪

⋃
α∈supp(p) uα and let mos : u∗ → α∗ denote the Mostowski

collapse of u∗. Let π : α∗ → u∗ denote the uncollapse and set
π(α∗) := κ. Now code the ‘transitive collapse’ of u∗, ũ, f̃ , (uα)α∈supp(p)
and (fα)α∈supp(p) as z ∈ ωω.

Let Q = 〈Qα, Q̇β : α ≤ α∗, β < α∗〉 be a countable (full) support
iteration of Sacks forcing of length α∗ in L[y , z ]. We will show that there
exists a P-name Ḣ and a condition p∗ ≤P p such that
p∗ 
P Ḣ is (L[y , z ],Q)-generic ∧ τ̇ ∈ L[y , z ][Ḣ].
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Capturing of Iterations

Sketch of Proof (Cont.)

To this end we define by induction on α ≤ α∗ an embedding
iα : Qα → Pπ(α), i.e. for every q1, q2 ∈ Q we have q1 ≤Q q2 iff
iα(q1) ≤Pπ(α)

iα(q2), with supp(iα(q)) = π[supp(q)] for every q ∈ Q, and
simultaneously we show using a preservation-of-properness argument that
for every q ∈ Qα there exists a p′ ≤P iα(q) such that
p′ 
Pπ(α)

i−1α [ĠPπ(α)
] is (L[y , z ],Qα)-generic.

Since the ‘transitive collapse’ of (uα)α∈supp(p) and (fα)α∈supp(p) belong to
L[y , z ], there exists a q ∈ Q such that iα∗(q) = p (in the sense that
iα∗(q) ≤P p and p ≤P iα∗(q)). Hence we can deduce that there exists a
p∗ ≤P p such that p∗ 
P i−1α∗ [ĠP] is (L[y , z ],Q)-generic.
Since the ‘transitive collapse’ of ũ and f̃ belong to L[y , z ], we have
p∗ 
P τ̇ = f̃ ((ṡπ(β))β∈mos[ũ] ∈ L[y , z ][i−1α∗ [ĠP]]. Hence, if we set

Ḣ := i−1α∗ [ĠP] then p∗ 
P Ḣ is (L[y , z ],Q)-generic ∧ τ̇ ∈ L[y , z ][Ḣ].
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Preserving Regularity Properties
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The Baire Property

Let M denote the Borel ideal of all meager sets of 2ω.

Definition

We say that BP(∆1
2) holds iff every ∆1

2 set X ⊆ ωω has the Baire
Property, i.e. there exists O ⊆ ωω open such that X4O is meager.

Similarly, we define when BP(Σ1
2) holds.

And recall:

Theorem (Judah-Shelah (1989), Solovay (1969))

BP(∆1
2) holds iff for ∀x ∈ ωω :

⋃
(M∩ L[x ]) 6= 2ω, i.e. there exists a

Cohen real over L[x ].

BP(Σ1
2) holds iff for ∀x ∈ ωω :

⋃
(M∩ L[x ]) ∈M, i.e. there exists a

comeager set of Cohen reals over L[x ].

Johannes Philipp Schürz Preserving levels of projective determinacy and regularity properties



Preserving Regularity Properties 1

Theorem (Sch.-Sch.-Sch.)

Assume that V � BP(∆1
2) and let P be a forcing notion. If Cohen forcing

uniformly captures P, then V P � BP(∆1
2).

Proof.

We will show that in V P there exists a Cohen real over L[x ] for every real
x ∈ ωω. Note that if c is a Cohen real over L[x , y ], then it is also a
Cohen real over L[x ].
Working in V assume that p ∈ P and τ̇ is a P name for a real. By
uniform capturing, there exist z ∈ ωω and a P-name ċ such that for every
y ∈ ωω there is a q ≤P p with

q 
P ċ is a Cohen real over L[y , z ] and τ̇ ∈ L[z ][ċ].

Let c0 ∈ ωω be a Cohen real over L[z ], which exists since BP(∆1
2) holds.

Set y := c0 and pick a corresponding condition q ≤P p with the required
properties.
By mutual genericity we have q 
P c0 is a Cohen real over L[z ][ċ] ⊇ L[τ̇ ].
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Preserving Regularity Properties 2

Theorem (Sch.-Sch.-Sch.)

Assume that V � BP(Σ1
2) and let P be a forcing notion. If Cohen forcing

uniformly captures P, then V P � BP(Σ1
2).

Proof.

We will show that in V P the set
⋃

(M∩ L[x ]) is meager for every real
x ∈ ωω. Working in V let p ∈ P and τ̇ be a P-name for a real. Again, by
uniform capturing, there exist z ∈ ωω and a P-name ċ with the required
properties.
Let M(2ω × 2ω) denote the Borel ideal of all meager sets of 2ω × 2ω. By
assumption, there exists an B ∈M(2ω × 2ω) ∩ V such that⋃

(M(2ω × 2ω) ∩ L[z ]) ⊆ B. Let B be coded by y ∈ ωω. Then there
exists q ≤P p such that

q 
P ċ is a Cohen real over L[y , z ] and τ̇ ∈ L[z ][ċ].
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Preserving Regularity Properties 2

Proof (Cont.)

Let G be (V ,P)-generic and working in V [G ] set
X := {u ∈ 2ω : (ċG , u) ∈ B}. We claim that X is meager and contains
every meager set coded in L[τ̇G ].
To see that X is meager, recall that by the Kuratowski-Ulam Theorem
there exists a comeager set C ⊆ 2ω coded in L[y , z ] such that for every
x ∈ C the set {u ∈ 2ω : (x , u) ∈ B} is meager. Since ċG is a Cohen real
over L[y , z ], we have ċG ∈ C . Hence, X is indeed meager.
Now assume that Y is a Borel meager set coded in L[z ][ċG ] ⊇ L[τ̇G ].
Since ċG is also a Cohen real over L[z ], there exists a
B ′ ∈M(2ω × 2ω) ∩ L[z ] such that Y = {u ∈ 2ω : (ċG , u) ∈ B ′}. Since
we have B ′ ⊆ B in V as well as in V [G ] by absoluteness, it follows that
Y ⊆ X holds in V [G ].
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Destroying Regularity Properties

Theorem (Sch.-Sch.-Sch.)

Let MI denote Miller forcing and assume V = L(Add(ω, ω1)).
Then VMI � ¬BP(∆1

2).

Proof (of Thm.)

Working in V , we assume towards a contradiction that

p 
MI ċ ∈ ωω is a Cohen real over L[ẋgen]

for some p ∈MI and an MI-name ċ . Using continuous reading of names
we may assume that f : [p]→ ωω is continuous and p 
 f (ẋgen) = ċ .

Claim

There exists q ≤MI p such that f (x) is a Cohen real over L[x ] for every
x ∈ [q].
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Destroying Regularity Properties

Proof (of Claim).

For every α < ω1 the set

Bα := {(x , z) ∈ (ωω)2 : z ∈
⋃

(M∩ Lα[x ])}

is a ∆1
1(y) set, where y ∈ ωω is a real coding α. In particular, Bα is

coded in L for every α < ω1, since ωL
1 = ω1. Now note that for every

α < ω1 the set Xα := {x ∈ [p] : (x , f (x)) ∈ Bα} is bounded and coded in
L[p, f ]:
If it were not bounded, then (by a result of Kechris) it would contain the
branches of a superperfect tree r ≤MI p. But then
r 
MI f (ẋgen) is not a Cohen real over L[ẋgen], since
‘∀x ∈ [r ] : (x , f (x)) ∈ Bα’ is Π1

1 and therefore absolute.
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Destroying Regularity Properties

Proof (of Claim) (Cont.)

Let η : ωω → [p] be the canonical homeomorphism, and note that
η−1[Xα] is bounded as well. The statement ‘η−1[Xα] is bounded’ is
Σ1

2(p, f ) and therefore absolute between L[p, f ] and V .
Since there exists a Cohen real over L[p, f ], there is an unbounded real d
over L[p, f ]. In particular, d is unbounded over η−1[Xα] for every
α < ω1. Now we pick q ≤MI p such that d ≤∗ η−1(x) for every x ∈ [q].
But then q is as desired.

Proof (of Thm.) (Cont.)

Now consider the set A := {f (x) + x : x ∈ [q]}. We note that A is a set
of Cohen reals over L, since for any x ∈ [q] we have that f (x) + x is a
translate of the Cohen real f (x) over L[x ], and thus again Cohen over
L[x ].
Moreover, A ⊆ ωω is analytic and unbounded, and therefore contains the
branches of a superperfect tree T . Then [T ] is a superperfect set of
Cohen reals over L. However, by a result of Spinas, this is impossible in
L(Add(ω, ω1)).
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∆1
3 Relations
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Generic Absoluteness

Lemma

Assume that V � ‘Every real has a sharp’ and let P be a forcing notion.
If P is captured by forcing notions of size < ωV

1 , then V ≺Σ1
3
V P.

Recall: Capturing

Let P be a forcing notion. We say that P is captured by forcing notions
with property ϕ iff

∀p ∈ P ∀ P-names τ̇ for a real ∀y ∈ ωω∃z ∈ ωω ∃Q ∈ L[y , z ] ∃q ≤P p :

L[y , z ] � ϕ(Q) ∧ q 
P ∃H : H is (L[y , z ],Q)-generic ∧ τ̇ ∈ L[y , z ][H]
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Generic Absoluteness

Proof (of Lemma).

Let ϕ(x) be a Σ1
3-formula and let ψ(x , y) be a Π1

2-formula such that
ϕ(x) = ∃y ψ(x , y). Let a ∈ ωω ∩ V and assume that V P � ϕ(a). Hence
there exists b ∈ ωω ∩ V P with V P � ψ(a, b).
Since P is captured by forcing notions of size < ωV

1 , there exist
z ∈ ωω ∩ V , Q ∈ L[a, z ] with |Q| < ωV

1 and H ∈ V P which is
(L[a, z ],Q)-generic such that b ∈ L[a, z ][H]. By Π1

2-absoluteness we have

L[a, z ][H] � ϕ(a). Hence there exists q ∈ H such that q 
L[a,z]
Q ϕ(a).

Since |Q| < ωV
1 and {a, z}] exists, we can find an (L[a, z ],Q)-generic

filter H ′ containing q in V . Hence L[a, z ][H ′] � ϕ(a) and by Σ1
3-upward

absoluteness we have V � ϕ(a).
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Thin, Symmetric ∆1
3 Relations

Definition

We call E ⊆ ωω × ωω a symmetric ∆1
3 relation iff E has a ∆1

3 definition
and ∀x , y ∈ ωω : (x , y) ∈ E ⇔ (y , x) ∈ E .
We call E thin iff there exists no perfect set of pairwise E -incompatible
reals.

Theorem (Sch.-Sch.-Sch.)

Let E be a symmetric, (sufficiently) absolute ∆1
3 relation, let P be a

countable support iteration of Sacks forcing and assume that V � ‘Every
real has a sharp’.
If V � E is thin, then V P � ∀x ∈ ωω ∃y ∈ ωω ∩ V : (x , y) ∈ E.
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Thin, Symmetric ∆1
3 Relations

We will need several Lemmas:

Lemma (1)

Let E be a thin, symmetric Π1
3 relation, let τ̇ be a P-name for a real and

assume that V � ‘Every real has a sharp’.

Then the set D := {p ∈ P : (p, p) 
P×P τ̇
Ġ1E τ̇ Ġ2} is dense in P.

Lemma (2)

Let θ be large enough and let N ≺ H(θ) be a countable, elementary
submodel with P ∈ N. Furthermore, let g ∈ V be an (N,P)-generic
filter. Then for every p ∈ P ∩ N there exists q ≤P p such that
q 
P g × (Ġ ∩ N) is (N,P× P)-generic.

and

Lemma (3)

Assume that ω1 is inaccessible to the reals. Then P× P is captured.
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Thin, Symmetric ∆1
3 Relations

Proof (of the Thm.)

Assume towards a contradiction that there exists a condition p ∈ P and a
P-name for a real τ̇ such that for every x ∈ ωω ∩ V we have p 
P ¬xE τ̇ .

By Lemma (1) we can assume w.l.o.g. that (p, p) 
P×P τ̇
Ġ1E τ̇ Ġ2 .

Let θ be large enough and let N ≺ H(θ) be a countable, elementary
submodel with p,P, τ̇ ∈ N. Let mos: N → N̄ denote the Mostowski
collapse. Working in V we can now pick an (N,P)-generic filter g with
p ∈ g . By Lemma (2) we can find q ≤P p such that q 
P g × (Ġ ∩ N) is
(N,P× P)-generic.
Since P× P is captured by Lemma (3), we can deduce that
q 
P N̄[mos[g × (Ġ ∩ N)]] is closed under sharps. Hence we can deduce
that q 
P N̄[mos[g × (Ġ ∩ N)]] ≺Σ1

2
V [Ġ ]. Since by (1) we have

q 
P N̄[mos[g × (Ġ ∩ N)]] � τ̇ gE τ̇ Ġ , Σ1
3-upward absoluteness implies

that q 
P τ̇
gE τ̇ Ġ .

This, however, leads to a contradiction, since τ̇ g ∈ ωω ∩ V .
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Further Questions

Question

Let P = 〈Pα, Ṗβ : α ≤ κ, β < κ〉 be a countable support iteration such

that for every α < κ we have 
Pα Ṗα is proper ∧ Ṗα is captured.
Does then follow that P is captured?

Question

Let P be a countable support iteration of Miller forcing. Assuming ω1 is
inaccessible to the reals, is P× P captured?

Question

Let E be a thin, symmetric, (sufficiently) absolute ∆1
3 relation, let P be

either Laver or Mathias forcing and assume that V � ‘Every real has a
sharp’. Can we again show that V P � ∀x ∈ ωω ∃y ∈ ωω ∩V : (x , y) ∈ E?

Thank you for listening!!!
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