Preserving levels of projective determinacy and regularity properties

Johannes Philipp Schürz

Technische Universität Wien

Vienna, June 24, 2021

supported by FWF project I3081

- We study the preservation of levels of projective determinacy and regularity properties under iterations of 'simply' definable forcing notions.
- This is done by using a technique called capturing.
- All the well-known tree forcings are 'simply' definable, hence our results are applicable to the study of cardinal characteristics.
- The results are from a joint project with Jonathan Schilhan and Philipp Schlicht.
- This project is a sequel to the paper 'Preserving levels of projective determinacy by tree forcings' by F. Castiblanco and P. Schlicht.

Preserving 'Every real has a sharp'

Definition

 0^{\sharp} exists iff each (at least one) of the following objects exist:

- An uncountable set of ordinals which are order-indiscernible over L.
- **2** A non-trivial, elementary embedding $j : L \rightarrow L$.
- S A well-founded, remarkable Ehrenfeucht-Mostowski type.
- A countable structure (L_{lpha}, \in, U) such that
 - (L_{lpha},\in) is a model of ZFC⁻ with a largest cardinal κ ,
 - (L_{α}, \in, U) is a model of Σ_0 -separation,
 - U is a $<\!\kappa$ -complete ultrafilter on $\mathcal{P}(\kappa)^{L_{lpha}}$ and
 - all iterated ultrapowers of (L_{lpha},\in,U) are wellfounded.

More generally, x^{\sharp} is defined for any real $x \in \omega^{\omega}$ by replacing L with L[x].

The existence of x^{\sharp} follows from the existence of a measurable cardinal.

We say that 'Every real has a sharp' iff $\forall x \in \omega^{\omega} : x^{\sharp}$ exists.

Preserving Large Cardinals

The following large cardinal preservation theorem is well known:

Theorem (Laver)

Let κ be supercompact and let V be suitably prepared. Then the supercompactness of κ is indestructible by any $<\kappa$ -directed closed forcing notion.

Maybe less known:

Theorem (Johnstone)

Let κ be strongly unfoldable and let V be suitably prepared. Then the strong unfoldability of κ is indestructible by any $<\kappa$ -closed, κ^+ -c.c. (κ -proper) forcing notion.

Question: What are other examples of large cardinals where such an 'exact' preservation can be shown for a larger class of forcing notions?

Determinacy

Let A be a subset of 2^{ω} . In the game G(A), two players play $n_i \in \{0, 1\}$ in turn. Player I wins iff $\vec{n} = \langle n_i \mid i \in \omega \rangle \in A$.

Table: G(A)

	Round 0		Round 1	
Player I	<i>n</i> 0		<i>n</i> ₂	
Player II		n_1		n ₃

We call A determined iff one of the players has a winning strategy in the game G(A). We say that Π_1^1 -determinacy holds iff every (co-)analytic set is determined.

Theorem (Harrington (1978), Martin (1970))

The following statements are equivalent:

- Π_1^1 -determinacy holds.
- Every real has a sharp.

But how can the statement 'Every real has a sharp' be preserved?

The answer lies in the technique of capturing:

Definition Let \mathbb{P} be a forcing notion. We say that \mathbb{P} is captured iff $\forall p \in \mathbb{P} \ \forall \ \mathbb{P}$ -names $\dot{\tau}$ for a real $\forall y \in \omega^{\omega} \exists z \in \omega^{\omega} \ \exists \mathbb{Q} \in L[y, z] \ \exists q \leq_{\mathbb{P}} p:$ $q \Vdash_{\mathbb{P}} \exists H: H \text{ is } (L[y, z], \mathbb{Q})\text{-generic } \land \dot{\tau} \in L[y, z][H]$

Theorem

Assume that $V \vDash$ 'Every real has a sharp' and let \mathbb{P} be a forcing notion. If \mathbb{P} is captured, then $V^{\mathbb{P}} \vDash$ 'Every real has a sharp'.

Proof.

Working in V let $p \in \mathbb{P}$ and $\dot{\tau}$ a \mathbb{P} -name for a real be arbitrary. Since \mathbb{P} is captured, there now exist $q \leq_{\mathbb{P}} p, z \in \omega^{\omega}$ and $\mathbb{Q} \in L[z]$ such that $q \Vdash_{\mathbb{P}} \exists H : H$ is $(L[z], \mathbb{Q})$ -generic $\land \dot{\tau} \in L[z][H]$. Since z^{\sharp} exists, there is a non-trivial, elementary embedding $j : L[z] \to L[z]$ with $\operatorname{crit}(j) > |\mathbb{Q}|$. Hence, j can be lifted to $j^* : L[z]^{\mathbb{Q}} \to L[z]^{\mathbb{Q}}$, and we can conclude that $q \Vdash_{\mathbb{P}} \exists H \exists j^* : \dot{\tau} \in L[z][H] \land j^* : L[z][H] \to L[z][H]$ is a non-trivial, elementary embedding. In particular, $q \Vdash_{\mathbb{P}} \exists \tilde{j} \ \tilde{j} : L[\dot{\tau}] \to L[\dot{\tau}]$ is a non-trivial, elementary embedding. The following is a strengthening of capturing:

Definition

Let $\mathbb P$ and $\mathbb Q$ be forcing notions and such that $\mathbb Q$ is definable. We say that $\mathbb Q$ captures $\mathbb P$ iff

 $\forall p \in \mathbb{P} \ \forall \ \mathbb{P}\text{-names} \ \dot{\tau} \text{ for a real } \forall y \in \omega^{\omega} \ \exists z \in \omega^{\omega} \ \exists q \leq_{\mathbb{P}} p$:

 $q \Vdash_{\mathbb{P}} \exists H \colon H \text{ is } (L[y, z], \mathbb{Q}^{L[y, z]})\text{-generic} \land \dot{\tau} \in L[y, z][H]$

The following is a strengthening of \mathbb{Q} captures \mathbb{P} :

Definition

Let $\mathbb P$ and $\mathbb Q$ be forcing notions and such that $\mathbb Q$ is definable. We say that $\mathbb Q$ uniformly captures $\mathbb P$ iff

 $\forall p \in \mathbb{P} \ \forall \ \mathbb{P}\text{-names} \ \dot{\tau} \ \text{for a real} \ \exists z \in \omega \ \exists \ \mathbb{P}\text{-name} \ \dot{H} \ \forall y \in \omega^{\omega} \ \exists q \leq_{\mathbb{P}} p:$

 $q \Vdash_{\mathbb{P}} \dot{H}$ is $(L[y, z], \mathbb{Q}^{L[y, z]})$ -generic $\land \dot{\tau} \in L[z][\dot{H}]$

Examples

Lemma (Castiblanco - Schlicht)

If ω_1 is inaccessible to the reals, then:

- Cohen forcing uniformly captures Sacks and Silver forcing.
- Mathias forcing uniformly captures Laver, Mathias and Miller forcing.

Lemma

If BP($\mathbf{\Delta}_2^1$) holds, then Cohen forcing uniformly captures Sacks and Silver forcing.

Lemma

If $BP(\mathbf{\Sigma}_2^1)$ holds, then Cohen forcing uniformly captures Miller forcing.

Lemma (Schilhan)

Let \mathbb{P} be a countable support iteration of Sacks or Silver forcing. If $BP(\mathbf{\Delta}_2^1)$ holds, then \mathbb{P} is captured.

We will need the following definitions:

Definition

Let $\mathbb{P} = (\text{dom}(\mathbb{P}), \leq_{\mathbb{P}})$ be a forcing notion such that $\text{dom}(\mathbb{P}) \subseteq \omega^{\omega}$. We say that \mathbb{P} is Suslin iff $\text{dom}(\mathbb{P})$ and $\leq_{\mathbb{P}}$ have Σ_1^1 definitions. We say that \mathbb{P} is strongly Suslin iff additionally the incompatibility relation $\perp_{\mathbb{P}}$ also has a Σ_1^1 definition.

and

Definition

Let \mathbb{P} be a Suslin forcing. We say that \mathbb{P} is proper-for-candidates iff for every countable, transitive model N containing the real parameters for the Suslin definitions of dom(\mathbb{P}) and $\leq_{\mathbb{P}}$ and satisfying ZFC*, and every $p \in \mathbb{P}^N$ there exists $q \in \mathbb{P}$ such that $q \leq_{\mathbb{P}} p$ and q is (N, \mathbb{P}) -generic.

Capturing of Iterations

We can now state our main theorem:

Theorem (Sch.-Sch.-Sch.)

Let $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{P}_{\beta} : \alpha \leq \kappa, \beta < \kappa \rangle$ be a countable support iteration of Suslin forcing notions \dot{P}_{β} such that for every $\alpha < \kappa$ we have:

 $\Vdash_{\mathbb{P}_{\alpha}} \forall A \in [\omega^{\omega}]^{\omega} \colon \dot{P}_{\alpha} \in L[A] \Rightarrow L[A] \vDash \dot{P}_{\alpha} \text{ is proper-for-candidates.}$

If ω_1 is inaccessible to the reals, then \mathbb{P} is captured.

Sketch of Proof.

For simplicity let us assume that \mathbb{P} is an iteration of Sacks forcing. Let $p \in \mathbb{P}, \dot{\tau} \in \mathbb{P}, \dot{\tau} \in \mathbb{P}$, $\dot{\tau} = \mathbb{P}$ -name for a real and $y \in \omega^{\omega}$ be arbitrary. Let $(\dot{s}_{\beta})_{\beta < \kappa}$ be a \mathbb{P} -name for the sequence of generic Sacks reals. Using continuous reading of names we can assume that there exists $\tilde{u} \subseteq \kappa$ countable and a continuous function $\tilde{f} : (2^{\omega})^{\tilde{u}} \to \omega^{\omega}$ such that w.l.o.g. $p \Vdash_{\mathbb{P}} \dot{\tau} = \tilde{f}((\dot{s}_{\beta})_{\beta \in \tilde{u}})$.

Sketch of Proof (Cont.)

Furthermore, we can assume w.l.o.g. that there exists $(u_{\alpha})_{\alpha\in \text{supp}(p)} \subseteq [\kappa]^{\omega}$ and $(f_{\alpha})_{\alpha\in \text{supp}(p)}$ with $f_{\alpha}: (2^{\omega})^{u_{\alpha}} \to \mathcal{P}(2^{<\omega})$ continuous such that $\forall \alpha \in \text{supp}(p): p \upharpoonright \alpha \Vdash_{\mathbb{P}_{\alpha}} \dot{p}(\alpha) = f_{\alpha}((\dot{s}_{\beta})_{\beta\in u_{\alpha}})$. Set $u^{*}:= \tilde{u} \cup \bigcup_{\alpha\in \text{supp}(p)} u_{\alpha}$ and let mos: $u^{*} \to \alpha^{*}$ denote the Mostowski collapse of u^{*} . Let $\pi: \alpha^{*} \to u^{*}$ denote the uncollapse and set $\pi(\alpha^{*}):=\kappa$. Now code the 'transitive collapse' of $u^{*}, \tilde{u}, \tilde{f}, (u_{\alpha})_{\alpha\in \text{supp}(p)}$ and $(f_{\alpha})_{\alpha\in \text{supp}(p)}$ as $z \in \omega^{\omega}$. Let $\mathbb{Q} = \langle \mathbb{Q}_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \alpha^{*}, \beta < \alpha^{*} \rangle$ be a countable (full) support iteration of Sacks forcing of length α^{*} in L[y, z]. We will show that there exists a \mathbb{P} -name \dot{H} and a condition $p^{*} \leq_{\mathbb{P}} p$ such that $p^{*} \Vdash_{\mathbb{P}} \dot{H}$ is $(L[y, z], \mathbb{Q})$ -generic $\land \dot{\tau} \in L[y, z][\dot{H}]$.

Sketch of Proof (Cont.)

To this end we define by induction on $\alpha < \alpha^*$ an embedding $i_{\alpha}: \mathbb{Q}_{\alpha} \to \mathbb{P}_{\pi(\alpha)}$, i.e. for every $q_1, q_2 \in \mathbb{Q}$ we have $q_1 \leq_{\mathbb{Q}} q_2$ iff $i_{\alpha}(q_1) \leq_{\mathbb{P}_{\pi(\alpha)}} i_{\alpha}(q_2)$, with $\operatorname{supp}(i_{\alpha}(q)) = \pi[\operatorname{supp}(q)]$ for every $q \in \mathbb{Q}$, and simultaneously we show using a preservation-of-properness argument that for every $q \in \mathbb{Q}_{\alpha}$ there exists a $p' \leq_{\mathbb{P}} i_{\alpha}(q)$ such that $p' \Vdash_{\mathbb{P}_{\pi(\alpha)}} i_{\alpha}^{-1}[G_{\mathbb{P}_{\pi(\alpha)}}]$ is $(L[y, z], \mathbb{Q}_{\alpha})$ -generic. Since the 'transitive collapse' of $(u_{\alpha})_{\alpha \in \text{supp}(p)}$ and $(f_{\alpha})_{\alpha \in \text{supp}(p)}$ belong to L[y, z], there exists a $q \in \mathbb{Q}$ such that $i_{\alpha^*}(q) = p$ (in the sense that $i_{\alpha^*}(q) \leq_{\mathbb{P}} p$ and $p \leq_{\mathbb{P}} i_{\alpha^*}(q)$. Hence we can deduce that there exists a $p^* \leq_{\mathbb{P}} p$ such that $p^* \Vdash_{\mathbb{P}} i_{\alpha^*}^{-1}[\dot{G}_{\mathbb{P}}]$ is $(L[y, z], \mathbb{Q})$ -generic. Since the 'transitive collapse' of \tilde{u} and \tilde{f} belong to L[y, z], we have $p^* \Vdash_{\mathbb{P}} \dot{\tau} = \tilde{f}((\dot{s}_{\pi(\beta)})_{\beta \in \mathsf{mos}[\tilde{u}]} \in L[y, z][\dot{i}_{\alpha^*}^{-1}[\hat{G}_{\mathbb{P}}]].$ Hence, if we set $\dot{H} := i_{\alpha^*}^{-1}[\dot{G}_{\mathbb{P}}]$ then $p^* \Vdash_{\mathbb{P}} \dot{H}$ is $(L[y, z], \mathbb{Q})$ -generic $\wedge \dot{\tau} \in L[y, z][\dot{H}]$.

Preserving Regularity Properties

The Baire Property

Let \mathcal{M} denote the Borel ideal of all meager sets of 2^{ω} .

Definition

We say that BP(Δ_2^1) holds iff every Δ_2^1 set $X \subseteq \omega^{\omega}$ has the Baire Property, i.e. there exists $O \subseteq \omega^{\omega}$ open such that $X \triangle O$ is meager.

Similarly, we define when $BP(\Sigma_2^1)$ holds.

And recall:

Theorem (Judah-Shelah (1989), Solovay (1969))

 $BP(\mathbf{\Delta}_2^1)$ holds iff for $\forall x \in \omega^{\omega} : \bigcup (\mathcal{M} \cap L[x]) \neq 2^{\omega}$, i.e. there exists a Cohen real over L[x].

 $BP(\mathbf{\Sigma}_2)$ holds iff for $\forall x \in \omega^{\omega} : \bigcup (\mathcal{M} \cap L[x]) \in \mathcal{M}$, i.e. there exists a comeager set of Cohen reals over L[x].

Theorem (Sch.-Sch.-Sch.)

Assume that $V \vDash BP(\mathbf{\Delta}_2^1)$ and let \mathbb{P} be a forcing notion. If Cohen forcing uniformly captures \mathbb{P} , then $V^{\mathbb{P}} \vDash BP(\mathbf{\Delta}_2^1)$.

Proof.

We will show that in $V^{\mathbb{P}}$ there exists a Cohen real over L[x] for every real $x \in \omega^{\omega}$. Note that if c is a Cohen real over L[x, y], then it is also a Cohen real over L[x]. Working in V assume that $p \in \mathbb{P}$ and $\dot{\tau}$ is a \mathbb{P} name for a real. By uniform capturing, there exist $z \in \omega^{\omega}$ and a \mathbb{P} -name \dot{c} such that for every $y \in \omega^{\omega}$ there is a $q \leq_{\mathbb{P}} p$ with

 $q \Vdash_{\mathbb{P}} \dot{c}$ is a Cohen real over L[y, z] and $\dot{\tau} \in L[z][\dot{c}]$.

Let $c_0 \in \omega^{\omega}$ be a Cohen real over L[z], which exists since BP(Δ_2^1) holds. Set $y := c_0$ and pick a corresponding condition $q \leq_{\mathbb{P}} p$ with the required properties.

By mutual genericity we have $q \Vdash_{\mathbb{P}} c_0$ is a Cohen real over $L[z][\dot{c}] \supseteq L[\dot{\tau}]$.

Theorem (Sch.-Sch.-Sch.)

Assume that $V \vDash BP(\mathbf{\Sigma}_2^1)$ and let \mathbb{P} be a forcing notion. If Cohen forcing uniformly captures \mathbb{P} , then $V^{\mathbb{P}} \vDash BP(\mathbf{\Sigma}_2^1)$.

Proof.

We will show that in $V^{\mathbb{P}}$ the set $\bigcup(\mathcal{M} \cap L[x])$ is meager for every real $x \in \omega^{\omega}$. Working in V let $p \in \mathbb{P}$ and $\dot{\tau}$ be a \mathbb{P} -name for a real. Again, by uniform capturing, there exist $z \in \omega^{\omega}$ and a \mathbb{P} -name \dot{c} with the required properties.

Let $\mathcal{M}(2^{\omega} \times 2^{\omega})$ denote the Borel ideal of all meager sets of $2^{\omega} \times 2^{\omega}$. By assumption, there exists an $B \in \mathcal{M}(2^{\omega} \times 2^{\omega}) \cap V$ such that $\bigcup (\mathcal{M}(2^{\omega} \times 2^{\omega}) \cap L[z]) \subseteq B$. Let *B* be coded by $y \in \omega^{\omega}$. Then there exists $q \leq_{\mathbb{P}} p$ such that

 $q \Vdash_{\mathbb{P}} \dot{c}$ is a Cohen real over L[y, z] and $\dot{\tau} \in L[z][\dot{c}]$.

Proof (Cont.)

Let G be (V, \mathbb{P}) -generic and working in V[G] set $X := \{u \in 2^{\omega} : (\dot{c}^G, u) \in B\}$. We claim that X is meager and contains every meager set coded in $L[\dot{\tau}^G]$. To see that X is meager, recall that by the Kuratowski-Ulam Theorem there exists a comeager set $C \subseteq 2^{\omega}$ coded in L[y, z] such that for every $x \in C$ the set $\{u \in 2^{\omega} : (x, u) \in B\}$ is meager. Since \dot{c}^{G} is a Cohen real over L[y, z], we have $\dot{c}^G \in C$. Hence, X is indeed meager. Now assume that Y is a Borel meager set coded in $L[z][\dot{c}^G] \supset L[\dot{\tau}^G]$. Since \dot{c}^{G} is also a Cohen real over L[z], there exists a $B' \in \mathcal{M}(2^{\omega} \times 2^{\omega}) \cap L[z]$ such that $Y = \{u \in 2^{\omega} : (\dot{c}^G, u) \in B'\}$. Since we have $B' \subseteq B$ in V as well as in V[G] by absoluteness, it follows that $Y \subset X$ holds in V[G].

Theorem (Sch.-Sch.-Sch.)

Let MII denote Miller forcing and assume $V = L(Add(\omega, \omega_1))$. Then $V^{MI} \models \neg BP(\mathbf{\Delta}_2^1)$.

Proof (of Thm.)

Working in V, we assume towards a contradiction that

$$p \Vdash_{\mathbb{MI}} \dot{c} \in \omega^{\omega}$$
 is a Cohen real over $L[\dot{x}_{\mathsf{gen}}]$

for some $p \in \mathbb{MI}$ and an \mathbb{MI} -name \dot{c} . Using continuous reading of names we may assume that $f : [p] \to \omega^{\omega}$ is continuous and $p \Vdash f(\dot{x}_{gen}) = \dot{c}$. \Box

Claim

There exists $q \leq_{\mathbb{MI}} p$ such that f(x) is a Cohen real over L[x] for every $x \in [q]$.

Proof (of Claim).

For every $\alpha < \omega_1$ the set

$$B_{lpha} := \{ (x,z) \in (\omega^{\omega})^2 \colon z \in \bigcup (\mathcal{M} \cap L_{lpha}[x]) \}$$

is a $\Delta_1^1(y)$ set, where $y \in \omega^{\omega}$ is a real coding α . In particular, B_{α} is coded in L for every $\alpha < \omega_1$, since $\omega_1^L = \omega_1$. Now note that for every $\alpha < \omega_1$ the set $X_{\alpha} := \{x \in [p] : (x, f(x)) \in B_{\alpha}\}$ is bounded and coded in L[p, f]: If it were not bounded, then (by a result of Kechris) it would contain the branches of a superperfect tree $r \leq_{\mathbb{MI}} p$. But then $r \Vdash_{\mathbb{MI}} f(\dot{x}_{gen})$ is not a Cohen real over $L[\dot{x}_{gen}]$, since ' $\forall x \in [r] : (x, f(x)) \in B_{\alpha}$ ' is $\mathbf{\Pi}_1^1$ and therefore absolute.

Proof (of Claim) (Cont.)

Let $\eta: \omega^{\omega} \to [p]$ be the canonical homeomorphism, and note that $\eta^{-1}[X_{\alpha}]$ is bounded as well. The statement ' $\eta^{-1}[X_{\alpha}]$ is bounded' is $\Sigma_{2}^{1}(p, f)$ and therefore absolute between L[p, f] and V. Since there exists a Cohen real over L[p, f], there is an unbounded real d over L[p, f]. In particular, d is unbounded over $\eta^{-1}[X_{\alpha}]$ for every $\alpha < \omega_{1}$. Now we pick $q \leq_{\mathbb{MI}} p$ such that $d \leq^{*} \eta^{-1}(x)$ for every $x \in [q]$. But then q is as desired.

Proof (of Thm.) (Cont.)

Now consider the set $A := \{f(x) + x : x \in [q]\}$. We note that A is a set of Cohen reals over L, since for any $x \in [q]$ we have that f(x) + x is a translate of the Cohen real f(x) over L[x], and thus again Cohen over L[x].

Moreover, $A \subseteq \omega^{\omega}$ is analytic and unbounded, and therefore contains the branches of a superperfect tree T. Then [T] is a superperfect set of Cohen reals over L. However, by a result of Spinas, this is impossible in $L(Add(\omega, \omega_1))$.

$\mathbf{\Delta}_3^1$ Relations

Lemma

Assume that $V \vDash$ 'Every real has a sharp' and let \mathbb{P} be a forcing notion. If \mathbb{P} is captured by forcing notions of size $\langle \omega_1^V$, then $V \prec_{\Sigma_1^1} V^{\mathbb{P}}$.

Recall: Capturing

Let $\mathbb P$ be a forcing notion. We say that $\mathbb P$ is captured by forcing notions with property φ iff

 $\forall p \in \mathbb{P} \ \forall \ \mathbb{P}\text{-names} \ \dot{\tau} \text{ for a real } \forall y \in \omega^{\omega} \exists z \in \omega^{\omega} \ \exists \mathbb{Q} \in L[y, z] \ \exists q \leq_{\mathbb{P}} p:$

 $L[y,z] \vDash \varphi(\mathbb{Q}) \land q \Vdash_{\mathbb{P}} \exists H \colon H \text{ is } (L[y,z],\mathbb{Q})\text{-generic} \land \dot{\tau} \in L[y,z][H]$

Proof (of Lemma).

Let $\varphi(x)$ be a Σ_3^1 -formula and let $\psi(x, y)$ be a Π_2^1 -formula such that $\varphi(x) = \exists y \ \psi(x, y)$. Let $a \in \omega^{\omega} \cap V$ and assume that $V^{\mathbb{P}} \models \varphi(a)$. Hence there exists $b \in \omega^{\omega} \cap V^{\mathbb{P}}$ with $V^{\mathbb{P}} \models \psi(a, b)$. Since \mathbb{P} is captured by forcing notions of size $\langle \omega_1^V$, there exist $z \in \omega^{\omega} \cap V$, $\mathbb{Q} \in L[a, z]$ with $|\mathbb{Q}| < \omega_1^V$ and $H \in V^{\mathbb{P}}$ which is $(L[a, z], \mathbb{Q})$ -generic such that $b \in L[a, z][H]$. By Π_2^1 -absoluteness we have $L[a, z][H] \models \varphi(a)$. Hence there exists $q \in H$ such that $q \Vdash_{\mathbb{Q}}^{L[a, z]} \varphi(a)$. Since $|\mathbb{Q}| < \omega_1^V$ and $\{a, z\}^{\sharp}$ exists, we can find an $(L[a, z], \mathbb{Q})$ -generic filter H' containing q in V. Hence $L[a, z][H'] \models \varphi(a)$ and by Σ_3^1 -upward absoluteness we have $V \models \varphi(a)$.

Definition

We call $E \subseteq \omega^{\omega} \times \omega^{\omega}$ a symmetric Δ_3^1 relation iff E has a Δ_3^1 definition and $\forall x, y \in \omega^{\omega} : (x, y) \in E \Leftrightarrow (y, x) \in E$. We call E thin iff there exists no perfect set of pairwise E-incompatible

reals.

Theorem (Sch.-Sch.-Sch.)

Let *E* be a symmetric, (sufficiently) absolute Δ_3^1 relation, let \mathbb{P} be a countable support iteration of Sacks forcing and assume that $V \vDash$ 'Every real has a sharp'. If $V \vDash E$ is thin, then $V^{\mathbb{P}} \vDash \forall x \in \omega^{\omega} \exists y \in \omega^{\omega} \cap V \colon (x, y) \in E$.

Thin, Symmetric Δ_3^1 Relations

We will need several Lemmas:

Lemma (1)

Let *E* be a thin, symmetric Π_3^1 relation, let $\dot{\tau}$ be a \mathbb{P} -name for a real and assume that $V \vDash$ 'Every real has a sharp'. Then the set $D := \{ p \in \mathbb{P} : (p, p) \Vdash_{\mathbb{P} \times \mathbb{P}} \dot{\tau}^{\dot{G}_1} E \dot{\tau}^{\dot{G}_2} \}$ is dense in \mathbb{P} .

Lemma (2)

Let θ be large enough and let $N \prec H(\theta)$ be a countable, elementary submodel with $\mathbb{P} \in N$. Furthermore, let $g \in V$ be an (N, \mathbb{P}) -generic filter. Then for every $p \in \mathbb{P} \cap N$ there exists $q \leq_{\mathbb{P}} p$ such that $q \Vdash_{\mathbb{P}} g \times (\dot{G} \cap N)$ is $(N, \mathbb{P} \times \mathbb{P})$ -generic.

and

Lemma (3)

Assume that ω_1 is inaccessible to the reals. Then $\mathbb{P} \times \mathbb{P}$ is captured.

Proof (of the Thm.)

Assume towards a contradiction that there exists a condition $p \in \mathbb{P}$ and a \mathbb{P} -name for a real $\dot{\tau}$ such that for every $x \in \omega^{\omega} \cap V$ we have $p \Vdash_{\mathbb{P}} \neg x E \dot{\tau}$. By Lemma (1) we can assume w.l.o.g. that $(p, p) \Vdash_{\mathbb{P} \times \mathbb{P}} \dot{\tau}^{G_1} E \dot{\tau}^{G_2}$. Let θ be large enough and let $N \prec H(\theta)$ be a countable, elementary submodel with $p, \mathbb{P}, \dot{\tau} \in N$. Let mos: $N \to \overline{N}$ denote the Mostowski collapse. Working in V we can now pick an (N, \mathbb{P}) -generic filter g with $p \in g$. By Lemma (2) we can find $q \leq_{\mathbb{P}} p$ such that $q \Vdash_{\mathbb{P}} g \times (\dot{G} \cap N)$ is $(N, \mathbb{P} \times \mathbb{P})$ -generic. Since $\mathbb{P} \times \mathbb{P}$ is captured by Lemma (3), we can deduce that $q \Vdash_{\mathbb{P}} \overline{N}[\max[g \times (G \cap N)]]$ is closed under sharps. Hence we can deduce that $q \Vdash_{\mathbb{P}} \bar{N}[\max[g \times (\dot{G} \cap N)]] \prec_{\Sigma_{2}^{1}} V[\dot{G}]$. Since by (1) we have $q \Vdash_{\mathbb{P}} \bar{N}[\max[g \times (\dot{G} \cap N)]] \vDash \dot{\tau}^{g} E \dot{\tau}^{\dot{G}}, \Sigma_{3}^{1}$ -upward absoluteness implies that $a \Vdash_{\mathbb{P}} \dot{\tau}^{g} E \dot{\tau}^{\dot{G}}$. This, however, leads to a contradiction, since $\dot{\tau}^g \in \omega^{\omega} \cap V$.

Question

Let $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{P}_{\beta} : \alpha \leq \kappa, \beta < \kappa \rangle$ be a countable support iteration such that for every $\alpha < \kappa$ we have $\Vdash_{\mathbb{P}_{\alpha}} \dot{P}_{\alpha}$ is proper $\wedge \dot{P}_{\alpha}$ is captured. Does then follow that \mathbb{P} is captured?

Question

Let \mathbb{P} be a countable support iteration of Miller forcing. Assuming ω_1 is inaccessible to the reals, is $\mathbb{P} \times \mathbb{P}$ captured?

Question

Let *E* be a thin, symmetric, (sufficiently) absolute Δ_3^1 relation, let \mathbb{P} be either Laver or Mathias forcing and assume that $V \vDash$ 'Every real has a sharp'. Can we again show that $V^{\mathbb{P}} \vDash \forall x \in \omega^{\omega} \exists y \in \omega^{\omega} \cap V \colon (x, y) \in E$?

Thank you for listening!!!