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Definition
Let A be a countable structure. We say that A has finite big Ramsey
degrees if for every n ∈ ω there is D(n) ∈ ω such that for every finite
coloring of [A]n there is a copy B of A (inside of A)
such that [B]n has at most D(n) colors.

Example

I (ω, no structure) (Ramsey)
I (Q, <) (Laver, Devlin)
I Random (Rado) graph (Todorčević, Sauer)
I Triangle free Henson graphH3 (Dobrinen, see also Hubička)
I Random 3-hypergraph (BHChKV)

Definition
A structure A ∈ C is universal (for a class of structures C)
if A contains a copy of very B ∈ C.



Definition
A structure A ∈ C is universal (for a class of structures C)
if A contains a copy of very B ∈ C.

Proposition
If A,B ∈ C are both universal for C and A has finite big Ramsey
degrees, then B also has finite big Ramsey degrees.



Trees

I rooted
I height at most ω . . . h(T ) ≤ ω
I finitely branching
I balanced (no short branches)
I n-th level of T . . . T (n)

I initial subtree . . . T (<n)

I set of immediate successors of s in T . . . isuT (s)

Definition
A subtree S of T of height h(S) = n ∈ ω + 1 is a strong subtree if

I ∀n < h(S) ∃m < h(T ) such that S(n) ⊆ T (m),
I ∀s ∈ S ∀t ∈ isuT (s) ∃!(s′ ∈ S, s′ ≥ t, s′ ∈ isuS(s)),

unless isuS(s) = ∅.
We write S ∈ STRn(T ).
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If S ∈ STRn(T ) and R ∈ STRm(S), then R ∈ STRm(T ).

Theorem (Milliken, simple version)
If T is a tree of height ω, n ∈ ω, and χ : STRn(T )→ k
is a finite coloring, then there exists S ∈ STRω(T )
such that χ is monochromatic on STRn(S).
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Trees, examples

Example
TB = 2<ω , the binary tree

Observation
If S ∈ STRn(TB), then S is isomorphic to TB(<n).

Example
TM =

⋃
{ 2n×n : n ∈ ω }, ordered by extension. The tree of matrices.

TSM ⊂ TM, the tree of sub-diagonal matrices.
If A ∈ TSM and A(i, j) 6= 0, then i < j.

For A ∈ TM(n) we write |A| = n.



Random graph has finite big Ramsey degrees
For s, t ∈ TB define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition
The graph (TB, E) is universal (for the class of all countable graphs).

Observation
If S ∈ STRω(TB), then (S, E) is a copy of (TB, E)
(both as a graph and as a tree).

Lemma
For every n ∈ ω and a ∈ [TB]n there exists
SB ∈ STR2n(TB) such that a ⊂ SB.

Proof
Given finite coloring χ : [TB]n → k.
Induces finite coloring χ̄ : STR2n(TB)→ k(2

2n)n .
Use Milliken’s theorem.
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Universal 3-hypergraphs have finite big Ramsey degrees
For A,B,C ∈ TSM define E(A,B,C) is |A| < |B| < |C| and
C(|A|, |B|) = 1.

Proposition
The hypergraph (TSM, E) is universal (for countable 3-hypergraphs).

Observation
If S ∈ STRω(TSM), then (S, E) is not a copy of (TSM, E).
(But we can find a copy of TSM inside S.)
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Product trees
TSM ⊗ TB . . . the product tree
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We say that SSM ⊗ SB ∈ STRk(TSM ⊗ TB)
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Valuations
Suppose SSM ⊗ SB ∈ STRk(TSM ⊗ TB) for some k ∈ ω + 1.
We define the tree val(SSM × SB) ⊆ SSM by induction:

I The root of val(SSM × SB) is the root of SSM.
I If A ∈ val(SSM ⊗ SB), t ∈ SB(|A|), C ∈ isuSSM(A),

and C > Aat , then A ∈ val(SSM ⊗ SB).

Observation
If SSM ⊗ SB ∈ STRk(TSM ⊗ TB),
then (val(SSM ⊗ SB), E) is a copy of (TSM(< k), E)
(both as a hypergraph and as a tree).

Lemma (false but fixable)
For every n ∈ ω there is f (n) ∈ ω
such that for every a ∈ [TSM]n there exists
SSM ⊗ SB ∈ STRf (n)(TSM ⊗ TB) such that a ⊂ val(SSM ⊗ SB).
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Observation
If SSM ⊗ SB ∈ STRk(TSM ⊗ TB),
then (val(SSM, SB), E) is a copy of (TSM(< k), E)
(both as a hypergraph and as a tree).

Lemma (false but fixable)
For every n ∈ ω there is f (n) ∈ ω
such that for every a ∈ [TSM]n there exists
SSM ⊗ SB ∈ STRf (n)(TSM ⊗ TB) such that a ⊂ val(SSM, SB).

Proof
Given finite coloring χ : [TSM]n → k.
Induces finite coloring χ̄ : STRf (n)(TSM ⊗ TB)→ K
(look at colors on valuations).
Use Milliken’s theorem.


