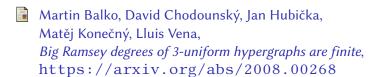
Big Ramsey degrees of 3-uniform hypergraphs are finite

David Chodounský

Charles University

Joint work with M. Balko, J. Hubička, M. Konečný, and L. Vena



Let **A** be a countable structure. We say that **A** has *finite big Ramsey degrees* if for every $n \in \omega$ there is $D(n) \in \omega$ such that for every finite coloring of $[\mathbf{A}]^n$ there is a copy **B** of **A** (inside of **A**) such that $[\mathbf{B}]^n$ has at most D(n) colors.

Example

•	$(\omega, \text{ no structure})$	(Ramsey)
•	$(\mathbb{Q},<)$	(Laver, Devlin)
•	Random (Rado) graph	(Todorčević, Sauer)
•	Triangle free Henson graph \mathbb{H}_3	(Dobrinen, see also Hubička)
•	Random 3-hypergraph	(BHChKV)

Definition

A structure $A \in C$ is universal (for a class of structures C) if A contains a copy of very $B \in C$.

A structure $A \in \mathcal{C}$ is universal (for a class of structures \mathcal{C}) if A contains a copy of very $B \in \mathcal{C}$.

Proposition

If $A, B \in \mathcal{C}$ are both universal for \mathcal{C} and A has finite big Ramsey degrees, then B also has finite big Ramsey degrees.

Trees

- rooted
- ▶ height at most ω ... $h(T) \leq \omega$
- finitely branching
- balanced (no short branches)
- ▶ n-th level of T ... T(n)
- ▶ initial subtree ... T(< n)
- ▶ set of immediate successors of s in T ... $isu_T(s)$

Definition

A subtree *S* of *T* of height $h(S) = n \in \omega + 1$ is a *strong subtree* if

- ▶ $\forall n < h(S) \exists m < h(T) \text{ such that } S(n) \subseteq T(m),$
- ▶ $\forall s \in S \ \forall t \in isu_T(s) \ \exists ! (s' \in S, s' \geq t, s' \in isu_S(s)),$ unless $isu_S(s) = \emptyset$.

We write $S \in STR_n(T)$.

A subtree *S* of *T* of height $h(S) = n \in \omega + 1$ is a *strong subtree* if

- ▶ $\forall n < h(S) \exists m < h(T) \text{ such that } S(n) \subseteq T(m),$
- ▶ $\forall s \in S \ \forall t \in isu_T(s) \ \exists ! (s' \in S, s' > t, s' \in isu_S(s)),$ unless $isu_S(s) = \emptyset$.

We write $S \in STR_n(T)$.

A subtree *S* of *T* of height $h(S) = n \in \omega + 1$ is a *strong subtree* if

- ▶ $\forall n < h(S) \exists m < h(T) \text{ such that } S(n) \subseteq T(m),$
- ▶ $\forall s \in S \ \forall t \in isu_T(s) \ \exists ! (s' \in S, s' > t, s' \in isu_S(s)),$ unless $isu_S(s) = \emptyset$.

We write $S \in STR_n(T)$.

If $S \in STR_n(T)$ and $R \in STR_m(S)$, then $R \in STR_m(T)$.

Theorem (Milliken, simple version)

If T is a tree of height ω , $n \in \omega$, and $\chi \colon STR_n(T) \to k$ is a finite coloring, then there exists $S \in STR_{\omega}(T)$ such that χ is monochromatic on $STR_n(S)$.

Trees, examples

Example

 $T_B = 2^{<\omega}$, the binary tree

Observation

If $S \in STR_n(\mathbf{T}_B)$, then S is isomorphic to $\mathbf{T}_B(< n)$.

Example

 $\mathbf{T}_{M} = \bigcup \{ 2^{n \times n} : n \in \omega \}$, ordered by extension. The tree of matrices.

 $\mathbf{T}_{SM} \subset \mathbf{T}_{M}$, the tree of sub-diagonal matrices.

If $A \in \mathbf{T}_{SM}$ and $A(i, j) \neq 0$, then i < j.

For $A \in \mathbf{T}_M(n)$ we write |A| = n.

For $s, t \in \mathbf{T}_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition

The graph (T_B, E) is universal (for the class of all countable graphs).

For $s, t \in \mathbf{T}_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition

The graph (T_B, E) is universal (for the class of all countable graphs).

Observation

If $S \in STR_{\omega}(\mathbf{T}_B)$, then (S, E) is a copy of (\mathbf{T}_B, E) (both as a graph and as a tree).

For $s, t \in \mathbf{T}_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition

The graph (T_B, E) is universal (for the class of all countable graphs).

Observation

If $S \in STR_{\omega}(\mathbf{T}_B)$, then (S, E) is a copy of (\mathbf{T}_B, E) (both as a graph and as a tree).

Lemma

For every $n \in \omega$ and $a \in [\mathbf{T}_B]^n$ there exists $S_B \in STR_{2n}(\mathbf{T}_B)$ such that $a \subset S_B$.

For $s, t \in \mathbf{T}_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition

The graph (T_B, E) is universal (for the class of all countable graphs).

Observation

If $S \in STR_{\omega}(\mathbf{T}_B)$, then (S, E) is a copy of (\mathbf{T}_B, E) (both as a graph and as a tree).

Lemma

For every $n \in \omega$ and $a \in [\mathbf{T}_B]^n$ there exists $S_B \in STR_{2n}(\mathbf{T}_B)$ such that $a \subset S_B$.

Proof

Given finite coloring $\chi \colon [\mathbf{T}_B]^n \to k$. Induces finite coloring $\bar{\chi} \colon \mathit{STR}_{2n}(\mathbf{T}_B) \to k^{(2^{2n})^n}$. Use Milliken's theorem.

Universal 3-hypergraphs have finite big Ramsey degrees

For $A, B, C \in T_{SM}$ define E(A, B, C) is |A| < |B| < |C| and C(|A|, |B|) = 1.

Universal 3-hypergraphs have finite big Ramsey degrees

For $A, B, C \in T_{SM}$ define E(A, B, C) is |A| < |B| < |C| and C(|A|, |B|) = 1.

Proposition

The hypergraph (T_{SM}, E) is universal (for countable 3-hypergraphs).

Observation

If $S \in STR_{\omega}(\mathbf{T}_{SM})$, then (S, E) is not a copy of (\mathbf{T}_{SM}, E) . (But we can find a copy of \mathbf{T}_{SM} inside S.)

Product trees

 $T_{SM} \otimes T_B$... the product tree

Definition

We say that $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ ($S_{SM} \otimes S_B$ is a strong subtree of $\mathbf{T}_{SM} \otimes \mathbf{T}_B$) if

- ▶ $S_{SM} \in STR_k(\mathbf{T}_{SM})$,
- ▶ $S_B \in STR_k(\mathbf{T}_B)$, and
- ▶ $\forall n \in k \exists m \in \omega \text{ such that } S_{SM}(n) \subseteq \mathbf{T}_{SM}(m) \text{ and } S_B(n) \subseteq \mathbf{T}_B(m).$

Product trees

 $T_{SM} \otimes T_B$... the product tree

Definition

We say that $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ ($S_{SM} \otimes S_B$ is a strong subtree of $\mathbf{T}_{SM} \otimes \mathbf{T}_B$) if

- $ightharpoonup S_{SM} \in STR_k(\mathbf{T}_{SM}),$
- ▶ $S_B \in STR_k(\mathbf{T}_B)$, and
- ▶ $\forall n \in k \exists m \in \omega \text{ such that } S_{SM}(n) \subseteq \mathbf{T}_{SM}(m) \text{ and } S_B(n) \subseteq \mathbf{T}_B(m).$

Theorem (Milliken, special case)

If $k \in \omega$ and $\chi \colon STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B) \to k$ is a finite coloring, then there exists $S_{SM} \otimes S_B \in STR_\omega(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ such that χ is monochromatic on $STR_k(S_{SM} \otimes S_B)$.

Valuations

Suppose $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ for some $k \in \omega + 1$. We define the tree $val(S_{SM} \times S_B) \subseteq S_{SM}$ by induction:

- ▶ The root of $val(S_{SM} \times S_B)$ is the root of S_{SM} .
- ▶ If $A \in val(S_{SM} \otimes S_B)$, $t \in S_B(|A|)$, $C \in isu_{S_{SM}}(A)$, and $C > A^{\smallfrown}t$, then $A \in val(S_{SM} \otimes S_B)$.

Valuations

Suppose $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ for some $k \in \omega + 1$. We define the tree $val(S_{SM} \times S_B) \subseteq S_{SM}$ by induction:

- ▶ The root of $val(S_{SM} \times S_B)$ is the root of S_{SM} .
- ▶ If $A \in val(S_{SM} \otimes S_B)$, $t \in S_B(|A|)$, $C \in isu_{S_{SM}}(A)$, and $C > A^{\smallfrown}t$, then $A \in val(S_{SM} \otimes S_B)$.

Observation

If $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$, then $(val(S_{SM} \otimes S_B), E)$ is a copy of $(\mathbf{T}_{SM}(< k), E)$ (both as a hypergraph and as a tree).

Lemma (false but fixable)

For every $n \in \omega$ there is $f(n) \in \omega$ such that for every $a \in [\mathbf{T}_{SM}]^n$ there exists $S_{SM} \otimes S_B \in STR_{f(n)}(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ such that $a \subset val(S_{SM} \otimes S_B)$.

Observation

If $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$, then $(val(S_{SM}, S_B), E)$ is a copy of $(\mathbf{T}_{SM}(< k), E)$ (both as a hypergraph and as a tree).

Lemma (false but fixable)

For every $n \in \omega$ there is $f(n) \in \omega$ such that for every $a \in [T_{SM}]^n$ there exists $S_{SM} \otimes S_B \in STR_{f(n)}(T_{SM} \otimes T_B)$ such that $a \subset val(S_{SM}, S_B)$.

Proof

Given finite coloring χ : $[\mathbf{T}_{SM}]^n \to k$. Induces finite coloring $\bar{\chi}$: $STR_{f(n)}(\mathbf{T}_{SM} \otimes \mathbf{T}_B) \to K$ (look at colors on valuations). Use Milliken's theorem.