Independent families and singular

cardinals

Diana Carolina Montoya

Research Seminar- Kurt Gödel Research Center University of Vienna Vienna. May 25th, 2021

Der Wissenschaftsfonds.

This is joint work with Omer Ben-Neria

Contents

• Independent families at uncountable cardinals

Kunen's proof

• The singular case

Section 1

Independent families at uncountable cardinals

Basic definitions

Definition

Assume that κ is a regular cardinal and χ is an infinite cardinal. Let \mathcal{A} be a family of subsets of χ such that $|\mathcal{A}| \geq \kappa$:

We denote by $\mathsf{BF}_{\kappa}(\mathcal{A})$ the family of partial functions $\{h : \mathcal{A} \to 2 : |\mathsf{dom}(h)| < \kappa\}$ and call it the family of bounded functions on \mathcal{A} .

$$lacksim {f G}$$
 Given $h\in {
m BF}_\kappa({\mathcal A})$, we define

$$\mathcal{A}^h = \bigcap \{A^{h(A)} : A \in \mathcal{A} \cap \operatorname{dom}(h)\},$$

where $A^{h(A)} = A$ if h(A) = 0 and $A^{h(A)} = \chi \setminus A$ otherwise. We call \mathcal{A}^h the Boolean combination of \mathcal{A} associated to h and we refer to $\{\mathcal{A}^h : h \in \mathsf{BF}_\kappa(\mathcal{A})\}$ as the family of generalized boolean combinations of the family \mathcal{A} .

Independent families

Definition

Let κ be a regular cardinal. A family $\mathcal{A} \subseteq \mathcal{P}(\chi)$ such that $|\mathcal{A}| \geq \kappa$ is called κ -independent if for for every $h \in \mathsf{BF}_{\kappa}(\mathcal{A})$, the set \mathcal{A}^h has size χ .

A κ -independent family \mathcal{A} is said to be maximal κ -independent if it is not properly contained in another κ -independent family. We call the cardinal κ the degree of independence of the family \mathcal{A} .

The issue with existence

- Analogously to the classical case (χ = κ = ω) it is possible to construct κ-independent families of size 2^κ (under some assumptions on κ).
- However, it is not possible to use Zorn's lemma to prove the existence of maximal κ-independent families, if κ is uncountable.

The following result of Kunen provides necessary conditions for the existence of maximal κ -independent families in the general context when κ is a regular uncountable cardinal.

Kunen's Theorem

Theorem (See Theorem 1 in [Kun83])

Suppose that κ is regular and uncountable and χ is any infinite cardinal. Also assume that there is a maximal κ -independent family $\mathcal{A} \subseteq \mathcal{P}(\chi)$, with $|\mathcal{A}| \geq \kappa$. Then:

- 1. $2^{<\kappa} = \kappa$ and,
- 2. there is a Γ with sup $\{(2^{\alpha})^+ : \alpha < \kappa\} \le \Gamma \le \min\{\chi, 2^{\kappa}\}$ such that, there is a non-trivial κ^+ -saturated Γ -complete ideal over Γ .

Saturated Ideals

Definition

Let κ be a cardinal. An ideal \mathcal{I} of subsets of κ is said to be γ -saturated if for any $\{X_{\alpha} : \alpha < \gamma\} \subseteq \mathcal{I}^+$, there are $\alpha_1, \alpha_2 < \gamma$ such that $X_{\alpha_1} \cap X_{\alpha_2} \in \mathcal{I}^+$. Here $\mathcal{I}^+ = \mathcal{P}(\kappa) \backslash \mathcal{I}$.

For a given ideal $\mathcal{I} \subseteq \mathcal{P}(\kappa)$ being γ -saturated is equivalent to the Boolean algebra $\mathcal{P}(\kappa)/\mathcal{I}$ having the γ -cc. Let $\operatorname{Sat}(\theta, \gamma, \mathcal{I})$ abbreviate the statement " \mathcal{I} is a θ -complete, γ -saturated ideal" and $\operatorname{Sat}(\theta, \gamma)$ the statement: "There is an ideal \mathcal{I} that is θ -complete and γ -saturated ideal".

Notice that the property $\operatorname{Sat}(\theta, \gamma, \mathcal{I})$ gets weaker when γ increases, i.e. if $\gamma < \gamma'$ then $\operatorname{Sat}(\theta, \gamma, \mathcal{I}) \to \operatorname{Sat}(\theta, \gamma', \mathcal{I})$. Also $\operatorname{Sat}(\theta, \omega)$ is equivalent to κ being measurable.

We will use the following result:

Theorem (Prikry, Solovay and Kakuda. See Theorem 17.1 in [Kan03])

Suppose that \mathcal{I} is a δ -saturated ideal over κ , where $\delta \leq \kappa^+$ is regular and \mathbb{P} is a partial order with the ν -cc where $\nu < \kappa$ and $\nu \leq \delta$. Then:

 $\Vdash_{\mathbb{P}} \check{\mathcal{I}}$ generated a $\delta-\text{saturated ideal over }\kappa$

Coming back to Kunen's result

Kunen's Theorem

- Since $\Gamma \ge \kappa$, then the ideal given by the theorem must be Γ^+ -saturated, which yields to an inner model with a measurable cardinal.
- If κ is not strongly inaccessible then $\Gamma \ge \kappa^+$, which implies by Ulam that κ is weakly inaccessible and Solovay that is is also weakly Mahlo.
- If κ is strongly inaccessible, it is consistent that $\kappa = \Gamma = \chi$.

A comment on countable independence degree and the regular case

If we assume $\kappa = \omega$ the existence of maximal κ -independent families at a cardinal χ is a straightforward consequence of Zorn's lemma. The following is a result of Fischer and myself regarding these families.

Theorem (See [FM20])

Let χ be a measurable cardinal and let $2^{\chi} = \chi^+$. Then there is a maximal ω -independent family of subsets of χ , which remains maximal after the χ -support product of δ -many copies of χ -Sacks forcing.

Also, Eskew and Fischer have studied the concept of independence for regular cardinals. In [EF21] they prove in particular that if $i(\kappa)$ is the minimum size of a maximal κ -independent family of subsets of κ . Then, it is consistent that $\kappa^+ < i(\kappa) < 2^{\kappa}$.

They also studied the spectrum of maximal κ -independent families at χ and gave a wide set of results involving it.

Section 2

Kunen's proof

We review a few details of the proof of \checkmark Kunen's Theorem which will be relevant for the results to come. Suppose that κ is a regular cardinal and let \mathcal{A} be a κ -maximal independent family of subsets of χ .

Define the map

$$\begin{split} \varphi\colon \operatorname{Fn}_{<\kappa}(\mathcal{A},2) \to \mathcal{P}(\chi) \\ p \mapsto \mathcal{A}^p. \end{split}$$

where ${\rm Fn}_\kappa(\mathcal{A},2)$ is the classical poset of partial functions $p:\mathcal{A}\to 2$ with $|{\rm dom}(p)|<\kappa.$

The map arphi

- $\blacktriangleright \ \varphi \text{ is an isomorphism from } \mathsf{Fn}_{\kappa}(\mathcal{A},2) \text{ into } [\chi]^{\chi}.$
- $\blacktriangleright \ p \leq q \text{ implies } \varphi(p) \subseteq \varphi(q).$
- The family \mathcal{A} is maximal if and only if for all $X \subseteq \chi$ there is a $p \in \mathbb{P}$ such that $\varphi(p) \subseteq^* X$ or $\varphi(p) \subseteq^* \chi \setminus X$.
- We can even assume that \mathcal{A} is maximal in a stronger sense that we call *densely maximal*, meaning that for all $X \subseteq \chi$ and all $p \in \mathbb{P}$, there is a $q \leq p$ such that $\varphi(q) \subseteq^* X$ or $\varphi(q) \subseteq^* \chi \setminus X$.

One associated ideal

Define the following ideal

$$\mathcal{I}_{\mathcal{A}} := \{ X \subseteq \chi : \forall p \in \mathbb{P} \left(\varphi(p) \not\subseteq^* X \right) \}.$$

To finish the proof of the Theorem, Kunen proved that the ideal $\mathcal{I}_{\mathcal{A}}$ is $(2^{\alpha})^+$ -complete for all $\alpha < \kappa$, that it is $(2^{<\kappa})^+$ -saturated and that $2^{<\kappa} = \kappa$ and so $\mathcal{I}_{\mathcal{A}}$ is in fact, κ^+ -saturated. Hence if Γ is the minimum cardinal such that $\mathcal{I}_{\mathcal{A}}$ is not Γ -complete, one gets the desired result.

Sufficient conditions

Lemma

Suppose κ is regular, $2^{<\kappa} = \kappa$, $\kappa \leq \chi$ and \mathcal{I} is a κ^+ -saturated χ -complete ideal over χ such that $\mathcal{B}(\operatorname{Fn}_{\kappa}(2^{\chi}, 2))$ isomorphic to $\mathcal{P}(\chi)/\mathcal{I}$. Then, there is a maximal κ -independent family of subsets of χ .

Back3

A consistency result

Theorem (Kunen)

If there is a measurable cardinal, then there is a maximal σ -independent family $\mathcal{A} \subseteq \mathcal{P}(2^{\omega_1})$.

The proof

Start with a measurable cardinal κ in a ground model V where CH holds.
 Let U be a normal measure witnessing the measurability of κ.
 We shall construct a model in which CH still holds and if κ = 2^{ℵ1}, there is an ω₂-saturated, κ-complete ideal J over κ such that the Boolean algebras P(κ)/J and B(Fn_{ω1}(2^κ, 2)) are isomorphic.

Sufficient conditions

Let \mathbb{P} be $\operatorname{Fn}_{\omega_1}(\kappa, 2)$ and let G to be a \mathbb{P} -generic filter over V. In V[G], $\kappa = 2^{\aleph_1}$ and we can define the following collection of subsets of κ :

$$\mathcal{J} = \{ X \subseteq \kappa : \exists Y \in \mathcal{U}(X \cap Y = \emptyset) \}$$

▶ \mathcal{J} is, in turn a κ -complete ω_2 -saturated ideal because \mathbb{P} has the ω_2 -cc and so \mathcal{J} is ω_2 -saturated and κ -complete in V[G].

The rest of the argument aims to construct an isomorphism between the Boolean algebras $\mathcal{P}(\kappa)/\mathcal{I}$ and $\mathcal{B}(\mathrm{Fn}_{\omega_1}(2^\kappa,2))$ in V[G].

- Let $j: V \to M = \text{Ult}(V, \mathcal{U})$ be the ultrapower embedding associated to \mathcal{U} , i.e. j is elementary, $\operatorname{crit}(j) = \kappa$.
- $\label{eq:left} \begin{tabular}{l} \blacktriangleright Let $\kappa^* = j(\kappa) > \kappa$, then $2^\kappa < \kappa^* < (2^\kappa)^+$ and the posets $\operatorname{Fn}_{\omega_1}(2^\kappa,2)$ and $\operatorname{Fn}_{\omega_1}(\kappa^* \backslash \kappa,2)$ are isomorphic. } \end{tabular}$

The isomorphism

Let's define the isomorphism $\Gamma: \mathcal{P}(\kappa)/\mathcal{I} \to \mathcal{B}(\operatorname{Fn}_{\omega_1}(\kappa^* \setminus \kappa, 2))$ in V[G] as follows: Given $[X] \in (\mathcal{P}(\kappa)/\mathcal{I})^{V[G]}$, and let \dot{X} be a \mathbb{P} -name for the set X. We define the function as follows:

 $\Gamma([X]):=\bigvee\{q\in \mathrm{Fn}_{\omega_1}(\kappa^*\backslash\kappa,2): \exists p\in G(p\cup q\Vdash \check{\kappa}\in j(\dot{X}))\}.$

▶ Recall that j(P) = j(Fn_{ω1}(κ, 2)) = Fn_{ω1}(κ^{*}, 2) ≃ P × Q, where Q = Fn_{ω1}(κ^{*}\κ, 2). Also, every element of the poset Q is represented in Ult(V, U) by a sequence (q_α : α < κ) such that q_α ∈ Q for all α < κ.
▶ Thus, if H is Q-generic over V[G], then G × H is j(P)-generic over V and we can define a map j to j^{*} : V[G] → M[G × H] as j^{*}(X) = (j(X))^{G×H} in V[G × H]. So, we can ask for a given set Y ∈ V[G] whether or not κ̃ ∈ (j(Y))^{G×H}.

Two more consistency results

Corollary

Assume κ is strongly compact in V. Then in V[G], where G is \mathbb{P} -generic (for $\mathbb{P} = \operatorname{Fn}_{\omega_1}(\kappa, 2)$ like in the theorem above) for every cardinal $\chi \geq \kappa$ such that $\operatorname{cf}(\chi) \geq \kappa$ there is a maximal σ -independent family of subsets of χ .

Theorem

Let δ be a regular cardinal such that $2^{<\delta} = \delta$ and κ be a measurable cardinal above it. Then there is a maximal δ -independent family $\mathcal{A} \subseteq \mathcal{P}(2^{\delta})$.

Section 3

The singular case

Framework

Now, we want to study the concept of independence in the case when λ is a singular cardinal of cofinality $\kappa < \lambda$.

Look at the definition of $\ref{eq:look}$ and notice, there is no a priori restriction about lifting it to the context of a singular. Note that if \mathcal{A} is λ -independent, then it is λ' -independent for all $\lambda' < \lambda$; in particular cf($\lambda) = \kappa$ -independent. The other direction does not hold:

Hausdorff's example at \aleph_{ω}

$$\mathcal{C} = \{(a,A): a \in [\lambda]^{<\omega}, A \subseteq \mathcal{P}(a)\}$$

and note $|\mathcal{C}| = \aleph_{\omega}^{<\omega} = \aleph_{\omega}$.

For $X \subseteq \lambda$ define

$$\mathcal{Y}_X = \{(a,A) \in \mathcal{C}: X \cap a \in A\}.$$

Then, $\mathcal{A} = \{\mathcal{Y}_X : X \subseteq \lambda\} \subseteq \mathcal{P}(\mathcal{C}) \simeq \mathcal{P}(\aleph_\omega)$ is ω -independent (or σ -independent).

Given $X_0, X_1, \dots X_i$ and $Z_0, Z_1, \dots Z_j$ for $i, j < \omega$, if $a \in [\lambda]^{<\omega}$ is such that $X_l \cap a \neq X_{l'} \cap a \neq Z_n \cap a \neq Z_{n'} \cap a$ for all $l, l' \leq i$ and $n, n' \leq j$. Then $a \in \bigcap_{l < i} \mathcal{Y}_{X_l} \cap \bigcap_{l < i} \lambda \setminus \mathcal{Y}_{Z_i}$.

Notice that \mathcal{A} is not ω_1 -independent: If $X_0 \subseteq X_1 \subseteq \ldots X_n \subseteq \ldots$ is cofinal in λ . Take $(a, A) \in \bigcap_i \text{ even } \mathcal{Y}_{X_i} \cap \bigcap_i \text{ odd } \lambda \setminus \mathcal{Y}_{X_i}$. Since the sequence of the X_n 's is cofinal there is a $n_a \in \omega$ (we can take it minimal) such that $a \subseteq X_{n_a}$, but then for all $i \geq n_a$, $a \cap X_i = a$ which is a contradiction.

More simple properties

The former is a general behavior:

Proposition

Let λ be a singular cardinal of cofinality $\kappa < \lambda$. Suppose that \mathcal{A} is a κ -independent family of subsets of λ , then \mathcal{A} is <u>not</u> κ^+ -independent.

Proposition

Suppose λ is a strong limit singular cardinal with $cf(\lambda) = \kappa$. Then there is a κ -independent family of subsets of λ of size 2^{λ} .

Maximality

Now we turn into maximality and the issue of existence of maximal independent families at singular cardinals. From now on, we assume that λ is a singular cardinal of cofinality $\kappa < \lambda$.

First we establish that a κ -independent family $\mathcal{A} \subseteq [\lambda]^{\lambda}$ is **maximal** if for all $X \in [\lambda]^{\lambda}$ there is a bounded function $\mathsf{BF}_{\kappa}(\mathcal{A})$ such that either $\mathcal{A}^h \setminus X$ or $\mathcal{A}^h \cap X$ is bounded in λ (i.e. of size $< \lambda$).

Cases

Let's consider the case where λ is singular of countable cofinality. In this case existence of a maximal ω-independent family (or just *independent*) of subsets of λ can be proven using Zorn's lemma.

In the case of λ singular of cofinality $\kappa > \omega$ we have the following: if there exists $\mathcal{A} \subseteq [\lambda]^{\lambda}$ a maximal κ -independent family, then Kunen's Theorem implies that $2^{<\kappa} = \kappa$ and that there is an ordinal Γ with $\sup\{(2^{\alpha})^{+} : \alpha < \lambda\} \leq \Gamma \leq \min\{\lambda, 2^{\kappa}\}$ such that, there is a non-trivial κ^{+} -saturated Γ -complete ideal over Γ .

Our results

The next result guarantees the existence of a maximal κ -independent family at a singular cardinal λ of cofinality κ , when we assume the existence of maximal κ -independent families at cardinals ($\lambda_{\alpha} : \alpha < \kappa$) converging to λ .

Lemma

Assume that λ is a singular cardinal of cofinality κ which is a limit of the sequence of cardinals $(\lambda_{\alpha} : \alpha < \kappa)$ of regular cardinals such that, for each $\alpha < \kappa$, there is a maximal δ -independent family $\mathcal{A}_{\alpha} \subseteq [\lambda_{\alpha}]^{\lambda_{\alpha}}$ and $\delta \leq \kappa < \lambda_{0}$ is regular such that there is a maximal δ -independent family of subsets of κ . Then, there is a maximal δ -independent family $\mathcal{B} \subseteq [\lambda]^{\lambda}$.

Lemma (An improvement of the lemma above)

Assume that λ is a singular cardinal of cofinality κ which is a limit of the sequence of cardinals $(\lambda_{\alpha} : \alpha < \kappa)$. Let also $(\delta_{\alpha} : \alpha < \kappa)$ be a sequence of regular cardinals with limit κ . Suppose also that for each $\alpha < \kappa$, there is a maximal δ_{α} -independent family $\mathcal{A}_{\alpha} \subseteq [\lambda_{\alpha}]^{\lambda_{\alpha}}$ and $\kappa < \delta_{0}$ is regular such that there is a maximal κ -independent family $\mathcal{B} \subseteq [\lambda]^{\lambda}$.

Theorem

Start with a ground model V in which GCH holds. Suppose that λ is a singular cardinal of cofinality κ which is a limit a sequence of cardinals $(\lambda_{\alpha} : \alpha < \kappa)$. Let also $(\delta_{\alpha} : \alpha < \kappa)$ be a sequence of regular cardinals converging to κ so that $\alpha \leq \delta_{\alpha}^{<\delta_{\alpha}} = \delta_{\alpha}$ and κ_{α} is δ_{α} -supercompact for all $\alpha < \kappa$. Then there is a generic extension of a universe $V \models$ GCH such that:

 $V^{\mathbb{P}} \models$ There is a maximal κ -independent family of subsets of λ

A refinement

Theorem

Assume that λ is a singular cardinal of cofinality κ which is a strong limit of the sequence of cardinals $(\lambda_{\alpha} : \alpha < \kappa)$. Let also $(\delta_{\alpha} : \alpha < \kappa)$ be a sequence of regular cardinals with limit κ . Suppose also that for each $\alpha < \kappa$, there is a maximal δ_{α} -independent family $\mathcal{A}_{\alpha} \subseteq [\lambda_{\alpha}]^{\lambda_{\alpha}}$ of size ρ_{α} and $\kappa < \delta_{0}$ is regular such that there is a maximal κ -independent family of subsets of κ . Put also $\chi_{\overline{\lambda}} = \operatorname{tcf}(\Pi_{i < \kappa} \lambda_{i}, <^{*})$ and $\chi_{\overline{\rho}} = \operatorname{tcf}(\Pi_{i < \kappa} \rho_{i}, <^{*})$.

Then, there is a maximal κ -independent family $\mathcal{B} \subseteq [\lambda]^{\lambda}$ of cardinality $\chi_{\bar{\lambda}} \cdot \chi_{\bar{\rho}}$.

Sizes of independent families (work in progress)

Let λ be a singular cardinal of cofinality $\kappa < \lambda$, let's define:

 $\mathfrak{i}(\lambda) = \{ |\mathcal{A}| \colon \mathcal{A} \subseteq [\lambda]^{\lambda} \text{ such that } \mathcal{A} \text{ is maximal } \kappa \text{-independent} \}$

The main open question.

References I

- Monroe Eskew and Vera Fischer, Strong independence and its spectrum., Submitted, 2021.
- Vera Fischer and Diana Carolina Montoya, Higher independence, Submitted, 2020.
- Akihiro Kanamori, The higher infinite, second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, Large cardinals in set theory from their beginnings. MR 1994835
- Kenneth Kunen, *Maximal* σ -independent families, Fund. Math. **117** (1983), no. 1, 75–80. MR 712215