
Integration with filters

Monroe Eskew
(joint work with Emanuele Bottazzi)
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Introduction

Feynman introduced a formalism in quantum mechanics in which one
averages over all possible random paths a particle can take. Giving this a
proper mathematical treatment in terms of classical measure theory has
been challenging. The basic issue is described by Charlie Wood in a recent
Quanta article:

“No known mathematical procedure can meaningfully average an
infinite number of objects covering an infinite expanse of space in
general. The path integral is more of a physics philosophy than
an exact mathematical recipe.”

We present here such a general procedure.
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One approach is with nonstandard analysis. Suppose X is a set and G is a
divisible Abelian group. Suppose j : V → M is an elementary embedding
such that in M, there is Y such that M |= “Y is finite”, and Y ⊇ j [X ].
For f : X → G we can average f by computing in M:

|Y |−1
∑
i∈Y

j(f )(i) ∈ j(G )

For G = R, we can extract the standard part of x ∈ j(R):

st(x) = sup{q ∈ Q : q < x}

Theorem (Henson, 1972)

Suppose (X , µ) is a probability space. There is some nonstandard
extension j : V → M and an M-finite Y ⊇ j [X ] such that for all integrable
f : X → R, ˆ

f dµ = st

(
|Y |−1

∑
i∈Y

j(f )(i)

)
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Typically such an embedding is obtained using an ultrafilter. We aim
towards a more constructive approach using reduced powers via fine filters.

A feature of this kind of approach is that it allows for a more fine-grained
quantification of the sizes of sets and the behavior of functions. For
example, we can have a series of relations among sets Ai ,Bi like:

m(Ai )� m(Ai+1); m(Bi ) ≈ rim(Ai ),

for i ∈ N and positive reals ri . The empirical meaning can be cashed out
by saying that for all i , n ∈ N, a generic finite sample of points z will have

|z ∩ Ai |
|z ∩ Ai+1|

+

∣∣∣∣ |z ∩ Bi |
|z ∩ Ai |

− ri

∣∣∣∣ < 1

n

Classical measures would flatten the description to just give all of these
sets measure zero.
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Comparison rings

Let us say that a structure is a comparison ring if it is commutative ring
with 1 and it carries a binary relation < with the following properties:

1 < is a strict partial order (i.e. transitive and irreflexive).

2 For all a, b, c, if a < b, then a + c < b + c .

3 For all a, b, if a, b > 0, then ab > 0.

4 For all a, a has a multiplicative inverse if and only if a2 > 0.
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Proposition

Suppose K is a comparison ring and a, b, c , d ∈ K .

1 K |= 0 < 1.

2 If a > 0, then a is invertible and a−1 > 0.

3 If a < 0, then a is invertible and a−1 = −(−a)−1 < 0.

4 If a < b and c < d , then a + c < b + d .

5 If a < b and 0 < c , then ac < bc.

6 0 < a < b if and only if 0 < b−1 < a−1.

7 The ordered field Q of rational numbers is a substructure of K .

Monroe Eskew (KGRC) Integration with filters October 7, 2021 6 / 23



Some terminology

Let K be a comparison ring, and let a, b ∈ K .

We say a is finite when −n < a < n for some n ∈ N, and infinite when
it is not finite. Note that the set of finite elements forms a subring.

If b > 0 and −b < na < b for all n ∈ Z, then we write a� b. Note
that the set {a ∈ K : a� b} is closed under addition and under
multiplication by finite elements.

We say a is infinitesimal when a� 1.

We say a ∼ b when a− b is infinitesimal.

We say a ≈ b when b is invertible and ab−1 ∼ 1. Note that this
implies a is also invertible, because 1/4 < (ab−1)2 and so
0 < b2/4 < a2. Thus also ba−1 ∼ 1.

We say that a, b > 0 are Archimedean-equivalent if there are
n,m ∈ N such that a < nb and b < ma.
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For a structure A, a set Z , and a filter F over Z , we write Pow(A,F ) for
the reduced power of all functions f : Z → A, where we say f , g are
equivalent modulo F if they are equal on a set S ∈ F . We interpret the
language of A modulo F similarly.

If K is an ordered field, then usually Pow(K ,F ) is not an ordered field,
because if F is not maximal, we lose the existence of multiplicative
inverses for all nonzero elements and the totality of the ordering. However:

Lemma

If K is a comparison ring and F is a filter over a set Z , then Pow(K ,F ) is
also a comparison ring.

For a comparison ring K , we define the upper standard part of a ∈ K as
st+ a = inf{q ∈ Q : a < q} and the lower standard part of a as
st− a = sup{q ∈ Q : a > q}.

We say that a ∈ K has a standard part if the upper standard part and the
lower standard part are equal. In this case, we define st a = st+ a = st− a.
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Filter integrals

Let G be a divisible Abelian group and F a fine filter over [X ]<ω. We
define an operator that assigns to functions f : X → G a value in
Pow(G ,F ). ˆ

f dF :=

[
z 7→

∑
x∈z

f (x)/|z |

]
F

.

We have that for any c ∈ G ,
´
c dF = [c]F . Furthermore, for any

functions f , g : X → G ,
´

(f + g) dF =
´
f dF +

´
g dF . Moreover, when

G has a ring structure, the integral is a linear operator.

If K is a comparison ring and f : X → K is such that
´
f dF has a

standard part, then we write this “standard integral” as
›
f dF .

The set {f ∈ Fun(X ,K ) : f has a standard integral} is a vector space over
Q. If K ⊇ R, then Q can be replaced with R.
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Representations

Lemma

Suppose µ is a finitely additive measure defined on an algebra A of
subsets of an infinite set X , taking extended real values in [0,∞] and
giving measure zero to all singletons. Let Y1, . . . ,Yk ∈ A have finite
measure, let x1, . . . , xl ∈ X , and let n ∈ N be positive. There exists a finite
z ⊆ X that satisfies the following properties:

1 x1, . . . , xl ∈ z ;

2 nl < |z |;
3 if µ(Y1 ∪ · · · ∪ Yk) > 0, then z \ {x1, . . . , xl} ⊆ Y1 ∪ · · · ∪ Yk ;

4 for 1 ≤ i , j ≤ k , if µ(Yi ) 6= 0, then:∣∣∣∣ |z ∩ Yj |
|z ∩ Yi |

−
µ(Yj)

µ(Yi )

∣∣∣∣ < 1

n
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Theorem

Suppose µ is a finitely additive real-valued atomless probability measure
defined on an algebra A of subsets of X . Then there is a definable filter
Fµ over [X ]<ω, which is the smallest fine filter F with the property that for
any bounded µ-measurable function f : X → R,

ˆ
f dµ =

“
f dF .

If µ is countably additive, then the same conclusion holds for all integrable
functions f .

Proposition

Suppose µ is a countably additive complete probability measure defined on
a σ-algebra A ⊆ P(X ). Let f : X → R be bounded. The following are
equivalent:

1 f is µ-measurable.

2 f has a standard Fµ-integral.
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Iterated integrals

Suppose we have fine filters F ,G over [X ]<ω, [Y ]<ω respectively. We
construct a fine filter F × G over [X × Y ]<ω concentrating on the finite
rectangles, F × G is the set of A ⊆ [X × Y ]<ω such that

{z1 ∈ [Y ]<ω : {z0 ∈ [X ]<ω : z0 × z1 ∈ A} ∈ F} ∈ G .

Let A be any algebraic structure. Then there is a canonical isomorphism

ι : Pow(A,F × G ) ∼= Pow(Pow(A,F ),G ).

Lemma

Suppose K is a divisible Abelian group, F ,G are fine filters over
[X ]<ω, [Y ]<ω respectively. Then for all f : X × Y → K ,

ˆ
f d(F × G ) =

¨
f dFdG .
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Proposition

Suppose F ,G are fine filters over [X ]<ω, [Y ]<ω respectively. For A ⊆ X
and B ⊆ Y ,

„ +

χA×B dFdG =

(“ +

χA dF

)(“ +

χB dG

)
;

„ −
χA×B dFdG =

(“ −
χA dF

)(“ −
χB dG

)
.

Theorem

Suppose µ, ν are countably additive probability measures on X ,Y
respectively. Then for all µ× ν-integrable functions f : X × Y → R, there
are sets A ⊆ X and B ⊆ Y such that µ(A) = ν(B) = 1, and

ˆ
f d(µ× ν) =

“
A×B

f d(Fµ × Fν) =

“
B×A

f̄ d(Fν × Fµ).
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Non-Archimedean measures and geometry

A well-known no-go result in functional analysis states that there is no
analogue of Lebesgue measure on infinite-dimensional separable Banach
spaces such that:

every Borel set is measurable;

the measure is translation-invariant;

every point has a neighborhood with finite measure.

This result is based on the following more general fact: If X is an
infinite-dimensional normed vector space over the reals, then every open
ball contains an infinite collection of pairwise-disjoint open balls of equal
radius (in fact only 1/4 the radius of the original ball). Thus there cannot
exist even a finitely additive translation-invariant measure on an
infinite-dimensional normed real vector space that gives every open ball of
finite radius a positive real measure.
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We a construct a non-Archimedean measure on a concrete space that
contrasts with this impossibility result.

Let us consider the space R<ω of ω-sequences of real numbers that are
eventually zero. Each Rn appears canonically as the collection of
sequences ~x such that ~x(m) = 0 for all m ≥ n. Of course, this real vector
space comes along with the standard Euclidean norm.

For a positive integer n, let µn be the Lebesgue measure on Rn. Let us
call a set A ⊆ R<ω middling if for all but finitely many n < ω,
µn(A ∩ Rn) <∞, and for infinitely many n < ω, µn(A ∩ Rn) > 0.
Intuitively, middling sets are larger than finite dimensional sets but much
smaller than the whole space. Clearly, every open ball in R<ω is middling.
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Theorem

There is a fine filter Γ over [R<ω]<ω and a �-increasing sequence of
positive infinitesimals 〈εi : i < ω〉 ⊆ Pow(R, Γ), such that, if
m(A) =

´
χAdΓ for A ⊆ R<ω, then:

1 εn = m([0, 1]n), the measure of the n-dimensional unit cube.

2 For any positive-volume Borel subset A of an n-dimensional piecewise
smooth surface S , m(A) ≈ voln(A)εn.

3 For any countable C ⊆ R<ω, m(C )� ε1.

4 For any middling Borel A ⊆ R<ω and any ~x ∈ R<ω,
m(A + ~x) ≈ m(A).

If κ is a cardinal such that every set of reals of size < κ has Lebesgue
measure zero, then we can replace “countable” with “<κ-sized” in the
third item. Let us call the resulting filter Γκ.
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Conditional probabilities

Given a fine filter F on [X ]<ω, we define:

the expected value of a function f as E(f ) :=
´
f dF .

the conditional expectation of a function f on a nonempty set A ⊆ X
as E(f |A) := E(f χA)/E(χA). Note that this is well-defined since´
χA dF > 0.

the probability of a set A as Pr(A) = E(χA) and the conditional
probability of A given B as Pr(A|B) = E(χA|B).

Our filter Γ on R<ω gives very simple answers to questions like: What is
the probability that you are in the arctic circle given that you are on the
prime meridian? (Answer: about 13%.) Historically there was some debate
about conditioning on events with classical measure zero, since geometric
paradoxes can arise if we try to derive conditional probability on lines from
a background probability distribution on the plane. Kolmogorov asserted
that the above question about the sphere doesn’t make sense, but it is
unproblematic with filter-probabilities.
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Dimension

As it accords with classical geometry, it seems natural to define the
dimension of an arbitrary subset A of R<ω to be the Archimedean
equivalence class of

´
χA dΓ.

Suppose F is a fine filter over [X ]<ω. Let dimF (A) denote the
Archimedean class of

´
χA dF . Let us say dimF (A) < dimF (B) when´

χA dF �
´
χB dF . Note that if F ′ ⊇ F , then dimF (A) < dimF (B)

implies dimF ′(A) < dimF ′(B).

Let us say that a set A ⊆ X is F -solid if for all Y ⊆ X such that |Y | < |X |,
dimF (Y ) < dimF (A). If Martin’s Axiom holds, then each positive-volume
Borel subset of a finite dimensional surface in R<ω is Γc-solid.
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Lemma

Assume MA. Let F be a fine filter over [c]<ω that is generated by a base
of size c. Suppose {Aα : α < c} and {Bα : α < c} are collections of
subsets of c such that each Bα is F -solid, and for all α, β < c,
dimF (Aα) < dimF (Bβ). Then there is a filter F ′ ⊇ F with a base of size c
and an F ′-solid C ⊆ c such that for all α, β < c,
dimF ′(Aα) < dimF ′(C ) < dimF ′(Bβ).

Proof:

Let 〈Xα : α < c〉 be an enumeration of a base for F . Let 〈Mα : α < c〉 be
a sequence of elementary submodels of H(2c)+ such that:

For each α < c, |Mα| < c, Mα ∩ c is an ordinal, and Mα ∈ Mα+1.

For each limit λ < c, Mλ =
⋃
α<λMα.

F , {(Aα,Bα,Xα) : α < c} ∈ M0.
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Claim

Suppose δ < c, s ∈ [c]<ω, and n ≥ 2. For p ∈ Add(ω, c), let
Cp = {β ∈ dom(p) : p(β) = 1}. Consider the set

Dδ,s,n = {p : dom(p) ∈
⋂
i∈s

Xi , and for all i , j ∈ s

n (| dom(p) ∩ Ai |+ | dom(p) ∩ δ|) < |Cp \ δ| < n−1| dom(p) ∩ Bj |}.

Then Dδ,s,n is dense.

Hint: Find z ∈
⋂

i∈s Xi such that z ⊇ dom(p), |z | > 2| dom(p)|, and for
all α, β ∈ s,

2n2(|s||z ∩ Aα|+ |z ∩ δ|) < |z ∩ Bβ|.
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By MA, let G0 be Add(ω, c)-generic over M0. Let C0 = {γ : G0(γ) = 1}.
Assume inductively that we have a sequence of sets 〈Cα ⊆ Mα : α < β〉,
with Cα ∩Mα′ = Cα′ for α′ < α. If β is a limit, let Cβ =

⋃
α<β Cα. If

β = β′ + 1, let Gβ be P-generic over Mβ, and let

Cβ = Cβ′ ∪ {γ : γ > Mβ′ ∩ c,Gβ(γ) = 1}.

Finally, we let C =
⋃
α<c Cα.

We can show that for each δ < c, each s ∈ [c]<ω, and each positive n ∈ N,
there is z ∈

⋂
i∈s Xi such that for α, β ∈ s,

n(|z ∩ Aα|+ |z ∩ δ|) < |z ∩ C | < n−1|z ∩ Bβ|.
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This means that the following family has the finite intersection property:

{z : n|z ∩ Aβ| < |z ∩ C |} for n < ω and α < c;

{z : n|z ∩ C | < |z ∩ Bβ|} for n < ω and β < c;

{z : n|z ∩ γ| < |z ∩ C |} for n < ω and γ < c;

Xδ for δ < c.

Let F ′ be the generated filter. Then C is F ′-solid, and for α, β < c,
dimF ′(Aα) < dimF ′(C ) < dimF ′(Bβ).
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Applying the lemma inductively, we get:

Theorem

Assume MA and 2c = c+. There is an extension of Γc to an ultrafilter U
such that for any collections S, T ⊆ R<ω of size at most c such that
dimU(S) < dimU(T ) for S ∈ S and T ∈ T and each T ∈ T is U-solid,
there is a U-solid C such that dimU(S) < dimU(C ) < dimU(T ) for all
S ∈ S and T ∈ T .

Consequently, for any sets A,B such that B is solid and
dimU(A) < dimU(B), the collection of dimensions of U-solid sets in the
open interval (dimU(A), dimU(B)) does not have a coinitial or cofinal set
of size c.

Thanks for your attention!
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